For the past ten years, cumulative average growth rate for electricity generation in India has been close to 6%. During the year 2016-17, total electricity generation was about than 1430 billion kW-hour or TW-hour. It will be more than 1500 TW-hour in 2017-18. Considering rate of economic growth, linkage between economic growth and electricity requirements, increasing urbanisation and current...
Research and Innovation contributes to several of the ten priorities of the European Commission for 2015-19. The EU's energy research policy contributes, in particular, to provide its citizens and businesses with secure and affordable energy, while also addressing the causes of climate change.
The next Research and Innovation Programme, covering the period 2021-2027, will build on the success...
The time and cost of further increasing the overall readiness level of fusion energy, which requires testing materials under extreme environment, data collection, analysis and new designs, can be significantly reduced with the advent of the fourth industrial revolution. The fourth industrial revolution is on its way. Known as Industry 4.0, it represents the current trend to use automation and...
A. Technologies for manufacturing of small and medium size Ion source (upto four RF driver) for positive and negative neutral beam systems have been evolved over last many decades and such ion sources are being successfully operated at various experimental facilities across the world. However, as the need arises for the larger size ion sources (eight driver) for ITER diagnostics and heating...
In tokamaks, baking of vacuum vessel and first wall components is a prerequisite in order to obtain impurity free plasmas. Baking is performed to remove impurities viz. H2, H2O and Hydro-Carbon from the vessel and first wall components. ADITYA tokamak has been upgraded ADITYA-U tokamak to achieve shaped plasmas. The ADITYA-U is equipped with a comprehensive baking system for heating the SS...
Tungsten (W) will be used in ITER as a Plasma Facing Material (PFM) in divertor due to its capability to handle high heat flux while having a low Hydrogen (H) isotope affinity. However in presence of fusion neutrons and alpha particles, tungsten can accumulate radiation damage, which might significantly enhance its H retention property. In order to investigate the effects of radiation damage...
The Electromagnetic Particle Injector (EPI) has the potential for delivering the radiative payload to the plasma center on a 3-4 ms time scale, much faster, and deeper, than what can be achieved using present methods. Predicting and controlling disruptions is an important and urgent issue for ITER. While a primary focus is the early prediction and avoidance of conditions favorable to a...
In general, the operation of AC discharges in small tokamaks requires the control of a few external parameters such as vertical and horizontal fields, external heating (where available), chamber conditioning and gas puff. The dynamics and type of control used are mostly based on experimental empirical learning, with different combinations of actuators depending on the tokamak device....
Turbulence spreading is the transfer of free turbulent energy from strongly driven (i.e., unstable regions) to weakly driven locations [1]. The net effect of this phenomenon is the radial redistribution of turbulent energy, modifying local plasma features. It has been pointed out that spreading may be important in setting the Scrape-Off Layer (SOL) width. The peak heat load onto the divertor...
For a burning plasma device like ITER, radiative power removal by seeded impurities will be inevitable to avoid divertor damage. Increasing divertor radiation by injecting low-Z impurities such as nitrogen, to reduce scrape-off layer heat flux and to cool the divertor plasma to detachment, is put forward as the primary method to achieve this goal. Here, the possibility of increasing the...
In the ITER, an important aspect of qualifying the components to the mandatory regulatory requirements, the system developers have a challenge to first design the components fulfilling guidelines of the ITER recommended French nuclear code RCC-MR (2007) and later on demonstrate to the regulator. It is even more involving for systems that are extending primary vacuum to the interspace and...
The Chinese Fusion Engineering Test Reactor (CFETR), complementing ITER, is aiming to demonstrate fusion energy production up to 200 MW initially and to eventually reach DEMO relevant power level, to manifest high duty factor of 0.3~0.5, and to pursuit tritium self-sufficiency with tritium breeding ratio (TBR) > 1. The key challenge to meet the missions of the CFETR is to run the machine in...
The results of a set of simulations of Alfvén modes driven by an energetic particle population are presented, with the specific aim of comparing energetic particle radial transport between single-n and multiple-n simulations. The hybrid reduced O($\epsilon^3_0$) MHD gyrokinetic code HMGC is used, retaining both fluid (wave-wave) and energetic particles nonlinearities. The code HMGC retains...
Two types of kink modes, fishbone and long-lived mode are experimentally and numerically studied at EAST tokamak. In high β_{P} plasma, sawtooth instability was replaced by a saturated 1/1 internal kink mode which either manifests itself as a periodical burst energetic ion related fishbone or as a long-lived mode which is associated to the core safety factor at q_0~1. The present of those 1/1...
Future devices like JT-60SA, ITER and DEMO require quantitative predictions of pedestal density and temperature levels, as well as divertor heat fluxes, to improve global confinement capabilities while preventing divertor erosion/melting in the planning of future experiments. Such predictions can be obtained from non-linear MHD codes like JOREK, for which systematic validation against current...
Key plasma physics and real-time control elements needed for robustly stable operation of high fusion power discharges in ITER have been demonstrated in US fusion research. Optimization of the current density profile has enabled passively stable operation without n=1 tearing modes in discharges simulating ITER’s baseline scenario with zero external torque. Stable rampdown of the discharge has...
An advanced molten salt (AMS), in which powders of hydrogen-soluble and chemically reactive metals such as titanium are mixed, is investigated as a potential self-cooled breeding blanket material. It is shown that hydrogen isotope uptake in a vanadium plate in molten salt FLiNaK is suppressed by the addition of Ti powders into the salt. In addition, the corrosion of candidate structural...
The Linear IFMIF Prototype Accelerator aims to operate in Rokkasho Fusion Institute a 125 mA/cw deuteron beam at 9 MeV In order to prove the technical feasibility of the IFMIF accelerators concept.
A 2.45 GHz ECR ion source developed by CEA-Saclay is designed to deliver 140 mA/100 keV CW D + beam. The low energy beam transfer line (LEBT) relies on a dual solenoid focusing system to...
In the presently available fusion reactors, cryogenic helium is an integral part for cooling the magnets in order to achieve super conductivity. Some of the fusion reactors use tritium as a nuclear fuel along with deuterium, in which a part of tritium is proposed to be breeded through lithium blanket covering the first wall of plasma. Since fusion reactors have very small burn up efficiencies...
Both tokamak scaling (ITER98y2) and...
In high microwave power applications like gyrotron, transmission line system, calorimetric dummy load, etc, requires design, modeling, simulation and evaluation of transmission line system before fabrication of the same is undertaken. Under the aegis of Department of Science and Technology (DST), a multi-institutional program for the development of a gyrotron operating at 42±0.2GHz/200kW/3secs...
Controlling the tearing mode (TM) is one of the major topics of fusion research, since TM degrades the plasma confinement and even induces major disruption if it is locked. Previous experimental and theoretical studies showed that the resonant magnetic perturbations (RMPs) influence both the rotation and width of the TM. As a result, the static RMP could apply a net stabilizing and braking...
ITER cooling waters system consists of large piping network to remove the heat load of about 950MWatt through various branched connections. Many of the branches are connected to main pipes by half coupling full penetration weld joints. There is requirement is to have full penetration for all the joints however quality classification (QC-2), recommends only 10% testing of the total weldment. In...
Lead-Lithium (Pb-Li) alloy in its eutectic composition is one of the promising candidates to be used as liquid blanket in fusion reactor. Helium cooled Lead Lithium (EU-HCLL), Dual cooled Lead Lithium (US-HCLL), Indian LLCB are some of the concepts being explored worldwide for future fusion reactor [1]. In this scenario, the characterization of Pb-Li alloy becomes important to gainfully...
The research goals are determining the effect of nitrogen plasma on the tungsten and comparative analysis of the formation of tungsten fuzz on the helium plasma interaction on the initial surface of tungsten and on the surface of tungsten, previously subjected to nitriding. The experiments were carried out on an imitation stand with a plasma-beam installation. The device provides the following...
Here we report a novel design of a heating laser for the fast ignition, combining fundamental and second harmonics lights. Such a two-colors laser is expected to heat a dense core more efficiently than a laser only with a fundamental light. We chose a LBO (LiB3O5) crystal which can convert a focusing beam due to its large acceptance of phase matching angle. We experimentally demonstrated the...
The baseline approach to high gain ICF involves the implosion of capsules containing a layer of DT ice [1]. DT ice layer designs require a high convergence ratio (CR > 30) implosion, with a hot spot that is dynamically created from DT mass originally residing in a thin layer at the inner DT ice surface. Although high CR is desirable in an idealized 1D sense, it amplifies the deleterious...
Different Inertial Fusion Energy (IFE) First Wall (FW) protections have been proposed in diverse conceptual designs that lead to very different irradiation conditions and macroscopic effects. A review is needed to understand their behavior. Some years ago a European proposal projected the possibility of non-protective FWs considering W and nano-tungsten. This work is describing in detail the...
A series of experiments has been conducted at AUG and TCV to disentangle the role of fueling, plasma triangularity and closeness to a double null (DN) configuration for the onset of the small ELM regime. At AUG, the role of the SOL density has been revisited. Indeed, it turns out that a large density SOL is not a sufficient condition to achieve the type-II (small) ELM regime. This has been...
The ITER Pre-Fusion Power Operating (PFPO) phase will include half-field/half-current (2.65T, 7.5 MA) and one-third field (1.8T, 5MA) operating scenarios, which ought to allow H-mode access even with limited heating [1].
While PFPO-1 relies only on ECRH and ICRH to achieve the H-mode, in PFPO-2 also the neutral beams will be applied. In the PFPO phases, the plasma will consist of either...
R. Manchanda1, M. B. Chowdhuri1, Nandini Yadava2, J. Ghosh1, 3, S. Banerjee1, Nilam Nimavat, K. Tahiliani, M. V. Gopalakrishna, U. C. Nagora1, P. K. Atrey1, J. Raval1, Y. S. Joisa1,
K. A. Jadeja1, R. L. Tanna1, and Aditya team
1Institute for Plasma Research, Bhat, Gandhinagar 382 428, India
2Gujarat University, Navrangpura, Ahmedabad 380 009, India
3Homi Bhabha National...
Future inertial fusion reactors are supposed to work with long pulses or with high repetition rates using repeated pellet implosions. In such extreme environments, the reactor wall materials will be disclosed to short X-ray pulses and fusion generated fragments. This will cause ablation to the wall material in the form of plasma that is expected to collide with each other in the center of the...
DIII-D experiments have demonstrated the expansion of the high-betaN hybrid scenario to the high density levels necessary for radiating divertor operation, leading to pedestal enhancement, and showed how the choice of injected impurity impacts the effectiveness of a radiating mantle solution, as well as the impurity transport to the core and the divertor. The scenario was made robust to...
Advanced tokamak scenario with central q close to 1 has been achieved on HL-2A tokamak. An ITB has been observed during the nonlinear evolution of a saturated long-lived internal mode (LLM) or fishbone activities in HL-2A discharges as the q-profile formed a very broad low-shear region with qmin ~ 1. Such steep ion temperature-gradient zone locates around r/a=0.5-0.6 with Ti>Te. The observed...
The interaction of a locked tearing mode with a non-axisymmetric control field is found to be in good qualitative agreement with predictions of a nonlinear resistive MHD model [1]. Locked tearing mode islands often lead to disruptions in tokamaks. However, experiments have shown that unlocking and rotation of the island by a rotating control field (CF) can postpone or prevent a disruption [2]....
In HL-2A low rotation and relatively low density plasmas, the critical threshold of the intrinsic error field penetration will be decreasing. And the multi-helicity islands can be seeded by the non-axisymmetric error field penetration, and lead to the change of rotation profile, enhanced transport or even disruption. Sheared flow arising from momentum injection can suppressed the coupled...