T.W. Morgan1,*, M. Balden2, T. Schwarz-Selinger2, Y. Li1.3, Th. Loewenhoff4, M. Wirtz4, S. Brezinsek4 and G. De Temmerman5
1 DIFFER - Dutch Institute for Fundamental Energy Research, De Zaale 20, 5612 AJ Eindhoven, the Netherlands
2 Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
3 Eindhoven University of Technology, Department of Mechanical Engineering,...
In view of the severe operating conditions for plasma facing components (PFCs) in future power producing fusion devices, the development of advanced materials is mandatory {1}. The materials not only have to withstand high steady state power loads but also high number of thermal cycles and shocks. Moreover, the change of thermo-mechanical properties by damage, activation and transmutation...
Concepts of the power exhaust and divertor design have been developed, with a high priority in the pre-conceptual design phase of the Japan-Europe Broader Approach DEMO Design Activity (BA DDA). A common critical issue is the large power exhaust in the main plasma and divertor by the radiative cooling with impurity seeding. (i) Different power exhaust concepts in the main plasma and divertor...
The advanced fabrication method named as the “Advanced Multi-Step Brazing (AMSB)” was newly developed for fabrication of a tungsten (W)/copper alloy divertor heat removal component in the fusion reactor. The AMSB enables production of a rectangle shaped fluid (cooling) flow path channel with leak tightness condition in the copper alloy heat sink. The prototype AMSB component with the rectangle...
The versatility and practicability of a manufacturing route for the plasma-facing material and component (PFMC) are necessary for the final realization of fusion reactors. Currently, the powder metallurgy (PM) route followed by a suitable plastic deformation process (e.g. hot rolling) is the prevalent manufacturing technique for the preparation of tungsten (W) based PFM. However, this route is...
The pulse length of the negative ion beam has been successfully extended over 100 s stably. The beam parameter was 500 keV, 154 A/m$^2$ for 118 s, which exceeds the requirement of negative ion beams (500 keV, 130 A/m$^2$, 100 s) for the negative-ion-based neutral beam injector (N-NBI) of JT-60SA. This is the first achievement over 100 s stable beam with intensity of > 75 MW/m$^2$ required...
Improvement of deuterium injection power in the negative-ion-based NBIs for LHD are reported. Co-extracted electron current at acceleration of D$^-$ ions limits the injection power. The electron current is reduced by decreasing the extraction gap, and D$^-$ current increased from 46 to 55 A. More electron suppression was achieved by installing a structure named “Electron Fence” (EF), with...
An Ion Cyclotron Range of Frequency (ICRF) system can provide power for a number of tasks, experimentally verified on present machines: heating and current drive, first wall conditioning, plasma start-up, removing of impurities from the core, controlling sawteeth and current ramp down assist. The system has a high plug-to-power efficiency and most of the components external to the machine are...
WEST Actively Cooled Load Resilient Ion Cyclotron Resonance Heating Results
J.Hillairet1, J.- M.Bernard1, L.Colas1, F.Durand1, W.Helou1,11, G.Lombard1, P.Mollard1, G.Urbanczyk1,2, Y.Song2, Q.Yang2, Z.Chen1,2, Y.Wang2, H.Xu2, S.Yuan2,...
We present a High Field Side (HFS) Lower Hybrid Current Drive (LHCD) launcher for DIII-D (1) to validate HFS launch scenarios, Figure 1 (a), incorporating a novel traveling-wave power divider and aperture impedance matching structure for good coupling over a wide range of edge density conditions, produced with additive manufacturing from Glen Research Copper 84 (GRCop-84) a high strength, high...