Speaker
Description
A notable improvement in the plasma performance has been observed after the injection of a series of frozen hydrogen pellets into ECH heated plasmas in the stellarator W7-X [1]. In these experiments, the pellet series rise the plasma density considerably and the central fuelling results in a peaked density profile. At the end of the pellet series, the ion and electron temperatures rise and almost equilibrate, and the plasma stored energy increases by more than 40\% reaching values above 1 MJ. This enhanced confinement phase lasts for several confinement times and terminates as the density and its peaking decay [2]. The stabilisation of this enhanced confinement will be of the utmost importance for exploring reactor-relevant scenarios in the device’s next operational phase with an actively cooled divertor.
A candidate to explain these observations is the reduction of the turbulent transport due to both, the stabilization by centrally peaked density profile of the ion temperature gradient (ITG) driven instabilities, and the specific stability properties of the electron-density-gradient driven trapped electron mode (TEM) in the W7-X magnetic geometry [3, 4]. This theoretical description has been to some extent supported by the drop in the line-integrated density fluctuation level measured with a phase contrast imaging (PCI) system during the enhanced confinement phase [5]. The present work reports, for the first time, radially-resolved measurements of density fluctuations and radial electric field by Doppler reflectometry (DR) that can provide new insights into the nature of this transient suppression of turbulence. The study encompasses several high-performance phases, observed under different heating power levels and magnetic configurations, along the 2018 W7-X experimental campaign. A comparison with both, neoclassical and gyrokinetic simulations is also presented in an attempt to test the ability of our most sophisticated tools to reproduce these observations.
Measurements are obtained with a DR system working in the 50-75 GHz frequency range in O-mode polarization. The reflectometer front end uses a single antenna and a set of mirrors for launching and receiving the signal at fixed probing beam angle of
Profiles of radial electric field,
Despite the qualitative similarity of profiles in the two magnetic configurations, the fluctuation levels are found to be significantly lower in the high iota compared to the standard one. This dependence appears to be in agreement wit their linear stability properties [4]. Indeed, both configurations exhibit a reduction in the growth-rates of electrostatic instabilities for certain combinations of temperature and density scale-lengths, that are achieved during the post-pellet phase, but the predicted reduction is more pronounced in the high iota configuration.
Encouraged by these observations, neoclassical as well as gyrokinetic simulations are in progress to conduct a systematic comparison with the experimental results. First neoclassical simulations using DKES and KNOSOS [7] show changes in the
[1] T. Klinger et al., Nuclear Fusion 59, 112004 (2019)
[2] S. A. Bozhenkov et al., Submitted
[3] J.H.E. Proll, et al., Phys. Rev. Lett. 108, 245002 (2012)
[4] J.A. Alcuson, et al., Plasma Phys. Control. Fusion 62, 035005 (2020)
[5] A. von Stechow et al., Density Turbulence Reduction by Equilibrium Profile Gradient Control in W7-X. 22nd Int. Stellarator / Heliotron Wksh. – ISHW (Madison, September 2019)
[6] T. Windisch et al., Proc. 14th Intl. Reflectometry Wksh. - IRW14 (Lausanne, May 2019) O.207
[7] J.L. Velasco, et al., submitted to J. Comp. Phys., arXiv:1908.11615 [physics.plasm-ph]
[8] E. Sánchez et al., Nuclear Fusion 59, 076029 (2019)
[9] M. Barnes, F. I. Parra, and M. Landreman, J. Comp. Phys. 391, 365-380 (2019)
Affiliation | CIEMAT |
---|---|
Country or International Organization | Spain |