Description
Chairs: Massimo Angiolini
Sodium-cooled Fast Reactor (SFR) possesses highest technology readiness level for deployment among six Gen-IV nuclear reactor designs intended to provide a low-carbon energy option and endure higher operating temperatures for longer service life (60-80 years). Thus, advanced materials developed for Gen-IV reactors should be able to withstand the harsh operating conditions allowing for safety...
Plasma nitriding is considered as a plausible alternate hard-facing technology for enhancing the wear and fatigue resistance of large size and intricate fast reactor components. Plasma nitriding is an environmentally clean process that can be adopted in principle, to produce high surface hardness in a controlled manner, with little distortion of finished components. In this regard, an attempt...
Support ring is a key heavy structural component of the sodium-cooled Fast Reactor (SFR), which supports the whole reactor vessel and the reactor internals, are subjected to high pressure and high temperature and other wind loads, seismic loads, dead loads etc. Therefore, the security and stability of the support ring is essential to nuclear reactor. As the support ring has a super large...
Adopting the 60-year design is regarded as one of the most effective means for the practical realization of Sodium-cooled Fast Reactor (SFR), which improves the economic efficiency and reduces the radioactive waste of SFR. In addition, since the happening of the severe accident (SA) at the Fukushima Daiichi Nuclear Power Station, the structural integrity evaluation of SA has been emphasized on...
316H austenitic stainless steel is widely used in the manufacture of nuclear reactor components owing to its excellent comprehensive properties, such as main vessel, support assembly, etc. During the fusion welding of austenitic stainless steel, the tendency of hot cracking tends to occur when the structural restraint is too large. For preventing the cracking, it is usually desirable to form a...
The future of nuclear power lies in inherently safe fast reactors operating in a closed nuclear fuel cycle. The concept of inherent safety, which is based on deterministic exclusion of the most serious accidents due to the internal properties of the reactor, and not by creation of engineering barriers, is the foundation for ensuring the safety and economic efficiency of future nuclear power....
The influence of liquid lead on mechanical properties of ferritic-martensitic steel T91 and austenitic stainless steel 316L have been studied in the JRC’s LIquid Lead LAboratory (LILLA). LILLA allows testing of mechanical and corrosion properties of materials in liquid lead with controlled dissolved oxygen concentrations and for temperatures up to 650°C. The load is generated by pneumatic...
Within the framework of the new evolutive French 400MWth Advanced Sodium Technological Reactor for Industrial Demonstration project (ASTRID), qualification tests have been performed in order to demonstrate and confirm the feasibility and the performance of major components.
One of them is related to the Intermediate Heat Exchanger (IHX) and specifically about the interface between the inner...