Since 18 of December 2019 uses Nucleus credentials. Visit our help pages for information on how to Register and Sign-in using Nucleus.
Apr 19 – 22, 2022
Vienna, Austria
Europe/Vienna timezone
FR22 starts in Vienna 19 - 22 April 2022 Online Stream:

Passive Heat Removal System Analysis for the Westinghouse Lead Fast Reactor

Apr 22, 2022, 11:18 AM
Vienna, Austria

Vienna, Austria

ORAL Track 6. Modelling, Simulations, and Digitilization 6.5 Integrated Analysis and Digitalization


Mr Daniel Wise


Westinghouse continues to develop its Next Generation high-capacity nuclear power plant (NPP) based on Lead‐cooled Fast Reactor (LFR) technology. By leveraging its long experience in NPP commercialization as well as strategic domestic and international partnerships established to most effectively complement capabilities, Westinghouse is progressing the plant’s design and its business and delivery model. With a power output of approximately 950 MWt, the Westinghouse LFR is a competitive, medium-size, simple, scalable and passively safe plant harnessing a liquid lead-cooled, fast neutron spectrum core operating at high temperatures in a pool configuration reactor encompassed by a passive heat removal system (PHRS). The paper focuses on the overall design of the Westinghouse LFR PHRS, and the analytical modeling and heat removal capabilities of the PHRS analyzed using the GOTHIC code. The PHRS design encompasses the LFR vessel and relies on a pool of water to effectively remove heat away from the reactor vessel during accident scenarios. During beyond design basis accidents, the PHRS pool water will eventually boil and steam off into the atmosphere, transitioning the pool to air-only cooling. To demonstrate the effectiveness of this system, an evaluation model of the PHRS was created with the GOTHIC computer program. GOTHIC is an integrated, general purpose thermal-hydraulics software package for design, licensing, safety and operating analysis of nuclear power plant containments, confinement buildings and system components. The code can model multiple forms of heat transfer including two-phase and boiling correlations. To simulate a real time response of the entire LFR PHRS, the GOTHIC code is coupled, using internal subroutines, to the LFR system code SAS4A/SASSYS 1. This paper will provide the details associated with the PHRS analysis for the Westinghouse LFR.

Country/Int. organization United States of America
Speaker's title Mr
Speaker's email address
Affiliation/Organization Westinghouse Electric Company LLC.

Primary author


Presentation materials

There are no materials yet.

Peer reviewing