Since 18 of December 2019 conferences.iaea.org uses Nucleus credentials. Visit our help pages for information on how to Register and Sign-in using Nucleus.

19–22 Apr 2022
Vienna, Austria
Europe/Vienna timezone
FR22 starts in Vienna 19 - 22 April 2022 Online Stream: https://event.do/iaea/a/#/events/5048

Advanced Reactor Experiments for Sodium Fast Reactor Fuels (ARES) Project: Transient Irradiation Experiments for Metallic and MOX Fuels

21 Apr 2022, 11:28
12m
Vienna, Austria

Vienna, Austria

ORAL Track 3. Fuels, Fuel Cycles and Waste Management 3.2 Development of innovative fuels: design and properties irradiation

Speaker

Colby Jensen (Idaho National Laboratory)

Description

Advanced Reactor Experiments for Sodium Fast Reactor Fuels (ARES) is a joint project between the U.S. Idaho National Laboratory (INL) and the Japanese Atomic Energy Agency (JAEA) to investigate the transient fuel performance of metallic and MOX fuels. The project has the specific goals of experimentally evaluating the transient failure modes of high burnup metallic and MOX fuels, guided by advanced modeling and simulation (M&S) tools, but also to support development and validation of M&S tools. The recent availability of the Transient Reactor Test (TREAT) facility provides the opportunity to renew in-pile evaluation of advanced fuel designs. Sodium Fast Reactor (SFR) experiments leverage a rich inventory of fuels irradiated in EBR-II and FFTF, currently residing at INL, and still supporting research programs at the INL. As part of the ARES project, a heat-sink capsule with liquid metal specimen bond has been designed and M&S is being used to develop the detailed experimental conditions for the planned experiments. A series of fresh fuel commissioning tests is planned in TREAT for 2021. These tests will evaluate the performance of the hardware and instrumentation to measure temperature response, fuel elongation, and fuel failure. The four irradiated fuel tests are planned for fully intact, high-burnup pins (2x metallic pins and 2x MOX pins), which achieved nearly ~13 at% burnup in EBR-II, to be irradiated in TREAT in 2022. Test instrumentation will include optical-fiber-based distributed temperature sensors, thermocouples, acoustic emission detectors, a capsule pressure sensor, self-powered neutron detectors (SPND) as well as the refurbished TREAT fuel motion monitoring system (hodoscope). Fresh fuel tests will incorporate additional advanced diagnostics including optical-fiber-coupled pyrometry and fuel elongation sensors. The experiments will benefit from advanced pre- and post-transient examination capabilities available at INL and actively used for similar examinations. Long-term test development underway includes a full circulating sodium loop and the ability to refabricate fuel specimens. This paper will present more detailed description of the planned test design, matrix, and conditions with an emphasis on modeling guiding experiment design.

Speaker's title Mr
Speaker's email address colby.jensen@inl.gov
Country/Int. organization United States of America
Affiliation/Organization Idaho National Laboratory

Primary author

Colby Jensen (Idaho National Laboratory)

Co-authors

Takayuki Ozawa (Japan Atomic Energy Agency) Dr Daniel Wachs (Idaho National Laboratory) Mr Nicolas Woolstenhulme (Idaho National Laboratory)

Presentation materials

There are no materials yet.