Shattered pellet injection (SPI) systems that form cryogenic pellets of low and high-Z impurities in a pipe-gun [1] for injection to mitigate disruptions have been fabricated and installed for use in thermal mitigation and runaway electron dissipation experiments on JET and KSTAR. These systems are to support disruption mitigation research for ITER and are based on an ORNL 3-barrel design for...
A series of experiments have been executed at JET to assess the efficacy of the newly installed Shattered Pellet Injection (SPI) system in mitigating the effects of disruptions. In this contribution, the results from these JET SPI experiments are presented and their implications for the ITER disruption mitigation scheme discussed.
An effective Disruption Mitigation System (DMS) that minimizes...
Shattered pellet injection (SPI) systems that form cryogenic pellets of low and high-Z impurities in a pipe-gun [1] for injection to mitigate disruptions have been fabricated and installed for use in thermal mitigation and runaway electron dissipation experiments on JET and KSTAR. These systems are to support disruption mitigation research for ITER and are based on an ORNL 3-barrel design for...
Access to high current (IP >~ 1 MA) relativistic electron (RE) beams in the DIII-D and JET tokamak reveal excitation of current-driven (low safety factor) kink instabilities that promptly terminate the RE beam on an Alfvenic time-scale [Ref. 1], a phenomenon first observed during the early JET carbon wall operation period. Unlike past results however, this phenomenon when combined with the...
New scaling laws and modeling, developed at DIII-D and benchmarked with data from JET and KSTAR, provide a path for projecting Shattered Pellet Injection (SPI) performance to ITER, while improved understanding of higher-order effects such as asymmetries better constrain the expected behavior. In the limit of radiative shutdown by high-Z impurity injection, the volume-averaged performance of...
Shattered pellet injection (SPI) systems that form cryogenic pellets of low and high-Z impurities in a pipe-gun [1] for injection to mitigate disruptions have been fabricated and installed for use in thermal mitigation and runaway electron dissipation experiments on JET and KSTAR. These systems are to support disruption mitigation research for ITER and are based on an ORNL 3-barrel design for...
ITER adopts a strategy that distributes radiated power evenly during the disruption mitigation and reduces the time to prepare pellets, using simultaneous multiple shattered pellet injections (SPIs)$^1$. However, since there were no existing devices with perfectly symmetric SPIs, as planned in ITER$^2$, sufficient studies have not been conducted on the effects of simultaneous multi-injections....
The ITER Disruption Mitigation System (DMS) should ensure that heat loads,
ElectroMagnetic (EM) loads, and Runaway Electron (RE) impacts remain tolerable during
ITER disruptions. The design of the Baseline ITER DMS, which shall be available from the
beginning of ITER operation, relies on Shattered Pellet Injection (SPI). Up to 24 pellets may
be injected from 3 equatorial ports, plus 3...
Novel disruption prevention solutions spanning the range of control regimes have been developed and tested on DIII-D to enable ITER success. First, the disruption risk during fast, emergency shutdown after large tearing and locked modes can be significantly improved by transitioning to a limited topology during shutdown. More than 50% of limited shutdowns reach a final normalized current $I_N$...