The capability to suppress edge localized modes (ELMs) is crucial for the success of ITER because the transient heat loads on the divertor due to ELMs would reduce the lifetime of plasma facing components to unacceptable levels. ELMs can be suppressed with the application of resonant magnetic perturbations (RMPs). But a side effect of RMPs is enhanced particle flux, or density pump-out, that...
Introduction. Extrapolations to ITER and DEMO from existing smaller experiments alone are unreliable, especially for turbulent transport - requiring the aid of predictive simulations. The 3D fluid turbulence code GRILLIX [1–4] is used to study confinement improvement through turbulence suppression that is compatible with power exhaust. This contribution describes the validation against...
Outline. We report on major progress regarding simulations of edge localized modes (ELMs). First of a kind simulations of realistic repetitive type-I ELM cycles are presented, reproducing in particular the explosive onset of the ELM crashes for the first time. Key to this achievement were numerical improvements, fully realistic plasma parameters and flows, a self-consistent evolution of...
In this paper we will present nonlinear full-$f$ electromagnetic gyrokinetic simulations of turbulence in the pedestal and scrape-off layer (SOL) region of a tokamak. The algorithms in the Gkeyll code solve the electromagnetic gyrokinetic equations using a continuum high-order discontinuous Galerkin scheme. The equations are written in a sympletic form in which the particle parallel momentum...
During burning plasma operation on ITER, extrinsic impurity seeding will be mandatory for heat flux control at the tungsten (W) divertor vertical targets [1]. A very extensive database of SOLPS plasma boundary code simulations has been compiled for ITER [1], including the most recent advances, obtained with the SOLPS-ITER version, in which for the first time, fluid drifts have been included...