ITER Organization, CS 90 046, 13067 St. Paul lez Durance Cedex, France
Significant progress has been made in the fabrication of the tokamak components and the ancillary systems of ITER and in the finalization of the plant infrastructure at the ITER site since the 2018 Fusion Energy Conference. By an agreed measure, over 2/3 of the work scope required for First Plasma has been accomplished....
The 2019-2020 scientific and technological programme exploits JET’s currently unique capabilities: Tritium handling and ITER-like wall (ILW: Be wall and W divertor). It is the culmination of years of concerted scientific and engineering work, with the ILW installation in 2010, improved diagnostic capabilities, now fully available, a major Neutral Beam Injection (NBI) upgrade providing record...
DIII-D physics research addresses critical challenges for operation of ITER and the next generation of fusion energy devices through a focus on innovations to provide solutions for high performance long pulse operation, development of scenarios integrating high performance core and boundary plasmas, and fundamental plasma science and model validation. Substantial increases in off-axis current...
Since the last IAEA-FEC, the EAST research programme has been, in support of ITER and CFETR, focused on development of the long-pulse steady-state (fully non-inductive) high beta H-mode scenario with active control of stationary and transient divertor heat and particle fluxes $^{[1]}$. The operational domain of the steady-state H-mode plasma scenario on EAST has been significantly extended...