The interface between plasma and liquid plays an important role in the generation and transfer of reactive species. Plasma bubbles offers the means of providing energy efficiency and enhanced mass transfer facilitating effective and competitive scaling of plasma systems for energy applications. A number of green chemistry examples will be presented including; Example One will focus on the...
The basic principle of plasma technologies is the modification of surface properties of solid materials by treatment with species of high potential and/or kinetic energy. The surface finish usually depends on the dose of plasma species (charged particles, neutral radicals, and radiation) and sometimes also on the fluxes of plasma species. Scientific literature, however, rarely reports the...
Australia’s enviable endowment of untapped solar energy renders it very attractive for investment in solar energy infrastructure. This is exemplified by Sun Cable Pty Ltd who are planning to build the world’s largest solar power plant in outback Australia. The time is ripe to create advanced plasma-based manufacturing capabilities that leverage our vast renewable energy reserves and develop...
Modifying the surface properties is often a necessary part of the industrial process as most of the components manufactured by common material processing methods have limited abilities when operated for specific applications. These applications require improvement in surface properties like wear resistance, corrosion resistance, biocompatibility, etc.
Surface modification by plasma is...
The plasma process contributes a high proportion of the semiconductor manufacturing process, and the complexity of the process is gradually increasing. To improve the degree of integration of semiconductor chips, various plasma sources and processes have been developed Furthermore, efforts have been made to design and optimize sources and processes using plasma simulators.
Although various...
The fundamental idea in Machine Learning (ML) is that, for many applications, training a computer algorithm for predicting or finding patterns in the behavior of a complex system by observing many input-output samples of its behavior can be significantly simpler than developing physics-based models.
Many of the ideas underlying this data-driven approach to understanding complex systems have...
Globally, biomedical researchers are hampered in reagent, consumable and product development by the inability of functional biomolecules to bind to polystyrene, glass and other important materials. Functional biomolecules - used in products ranging from diagnostics to cell culture to drug delivery systems - are most often physisorbed to the surface, meaning their attachment is relatively weak...
In many areas of energy production and application, materials with superb thermal and mechanical properties are required. In particular in fusion devices, first wall materials are exposed to extreme heat, neutron and particle fluxes, leading to material degradation. In solar tower power plants the exposure to highly concentrated and alternating solar fluxes, leading to cyclic thermal loads,...
Water scarcity is among the most pressing problems of the modern world. Water usage estimates vary, but about 70% of worldwide water is used for irrigation for growing crops [1]. With the latest advancements in climate change and shortage of food, pressing issues with water scarcity will only escalate. Stated facts point to minimizing agricultural water usage, which can be achieved by...
Removal of micropollutants (MPs)/emerging contaminants (ECs) is crucial for ensuring water quality and safeguarding human and environmental health due to their carcinogenic, mutagenic and endocrine disruptive effects on living organisms (i.e. humans and animals) (EU Directives 2013/39/EU). These contaminants include pharmaceutically active compounds (PhACs) [1], heavy metals, and xenobiotic...
The interaction between low-temperature plasmas and liquid surfaces is a critical problem in many emerging plasma applications including plasma medicine, chemical processing, and water treatment, where precise control over the generation of reactive oxygen and nitrogen species, as well as solvated electrons, is essential. However, comprehensively characterizing the plasma-liquid interface...
A promising approach for removing methylene blue (MB) in wastewater is the plasma liquid interface (PLI). Indeed, PLI can destroy contaminants at room temperature without adding chemicals due to PLI's ability to provide abundant environmental oxidation at the interface, including OH, O, H2O2, radicals, excited species, electrons, and ions. Herein, the removal of MB in water was investigated by...
The uniqueness of low-temperature plasma is in its ability to change composition in situ. Plasma self-organization could lead to formation of coherent plasma structures. These coherent structures tend to modulate plasma chemistry and composition, including reactive species, the electric field and charged particles. Formation of coherent plasma structures allows the plasma to adapt to external...
Plasma processing technologies involve physical processes induced by electron collisions with precursors to produce unstable, short-lived reactive species that subsequently react with other species to generate various products. As an example, discharges in air with water vapor, a hydroxyl and nitrosyl radicals is first generated, following which chain growth occurs via initiation and...
Plasma medicine, defined as the application of non-equilibrium plasmas for therapeutic purposes, has made tremendous progress over the last decade, becoming a lively transdisciplinary research field where expertises from life sciences and medicine are combined with plasma physics, chemistry and engineering. Plasma application in wound healing is well on its way into clinical routine and...
Abstract
Atmospheric pressure (atm) cold plasmas could be utilized as biocatalysts in various bio-medical applications due to their unique properties, such as their ability to generate reactive oxygen and nitrogen species (RONS). Plasma biocatalysts on living cells and tissues have been studied extensively, and researchers have identified several influential...
1 Introduction: Molecular/gene introduction by plasma
The authors examined various plasma sources for gene/molecular introduction into cells[1]. We found that the micro-discharge plasma with a counter electrode provides electrical current to cells in this configuration, simultaneously achieving high transfection efficiency and cell viability[1,2]. Since the plasma treatment time is short...
Atmospheric pressure non-thermal (i.e., cold) plasmas especially atmospheric pressure plasma jets are widely studied in plasma medicine and used for various therapeutic applications. These cold plasmas for tumor treatment or for skin infection etc. is promising and emerging field. Recently, the use of plasma in dermatology, cancer research and oncology are of particular interest. In this talk,...
The conversion of inert molecules (e.g., CO2, CH4, and N2) with strong chemical bonds for the synthesis of value-added synthetic fuels and platform chemicals has attracted significant interest. However, the activation of these molecules remains a great challenge due to their thermodynamical stable, requiring a substantial amount of energy for activation. Non-thermal plasma (NTP) has emerged as...
Several renewable energy harvesting technologies have matured and become affordable and the main output, renewable electricity, is becoming a commodity. The new challenges are short and low-term storage, as well as its conversion into dense, easily transportable forms. Gases and liquids are energy-dense storage media, and the handling infrastructures are already well established for several...
The focus of this presentation will be on fabrication of cost-, time- and energy-efficient 3-D nanostructured electrode materials for high-performance energy storage (Li/Na ion batteries) and energy conversion (half/full cell) devices using low-temperature carbon/nitrogen plasmas. For energy storage devices, the electrode materials, particularly the anode materials, significantly influence the...
The dry reforming of methane has been studied over modified TiO2-supported 10%Ni-5%Co3O4 composite catalysts using a non-thermal plasma dielectric barrier discharge fixed-bed reactor. The 10%Ni-Co3O4/modified-TiO2 nanorods (NR) have been synthesized by hydrothermal method. Physicochemical characterizations of the composite catalysts have been conducted by X-ray diffraction (XRD), H2...
Among established and emerging plasma technologies for space applications are electric propulsion for satellites, plasma contactors for preventing charge accumulation on spacecraft and electrodynamic tethers. This talk will be focused mainly on electric propulsion which utilizes electric power to ionize and accelerate propellant, thereby generating thrust. The main advantage of using electric...
Disposal of different waste streams including hazardous and biomedical waste in an environment friendly manner is a serious concern all over the world. Poorly designed incinerators and wrong operational practices produce extremely harmful carcinogenic compounds such as dioxins, furans, poly aromatic hydrocarbons (PAH) etc. which are released in the environment. Thermal plasma technology is...
Low-temperature, atmospheric-pressure plasmas in contact with liquids have attracted interest for various chemical applications including the synthesis of colloidal nanoparticles, degradation of organic pollutants, and conversion of abundant feedstocks. Compared to other chemical approaches, plasma-liquid chemistry does not require a catalyst material, is electrified, and produces unique...
Possible avenues for the plasma nanoscience and nanotechnology to help develop and advance clean, green, and sustainable solutions for the future carbon-emissions-free world are critically examined. The underlying scientific and technological approach is based on synergistic application of plasma electrified, catalytic, and hybrid processes and diverse sustainable feedstocks for the effective...
Gas treatment by atmospheric pressure plasma is gaining interest because the process is environmentally friendly. Specifically, atmospheric pressure plasma features a gas ionization state that consists of energetic electrons, ions, radicals, and excited species; consequently, contaminants compounds can be destroyed under mild conditions: low temperature, fast conversion, and potential...
Plasma–liquid interactions are important in many applications ranging from environmental remediation to material science and health care. Depending on the type of non-equilibrium electrical discharge plasma, its contact with liquid (i.e., generated either directly in the liquid, in the gas phase over, or in contact with a liquid), and the chemical composition of the surrounding environment,...
Natural gas is one of the abundant fossil fuels, and probably the most flexible considering its relatively simple composition. The primary constituent is methane, and methane is used in several industrially crucial processes, such as steam-methane reforming and partial oxidation for the production of hydrogen and syngas, respectively. However, there are still plenty of other reactions that...
Microwave Plasma and Radio Frequency (RF) Plasma are widely utilized plasma techniques for fabricating nano materials with tailored properties to suit specific applications. RF Plasma Enhanced Chemical Vapor Deposition (PECVD) is commonly employed for producing carbon nanomaterials, such as vertical graphene, which possesses desired defects for specific applications. By adopting PECVD,...
Plasma agriculture is an emerging research field that involves the use of low-temperature plasma to enhance agricultural productivities [1-4]. Based on some examples, we discuss some potential pros and cons associated with plasma agriculture.
Seven Pros of Plasma Agriculture:
1. Increased crop yields: Plasma agriculture has the potential to enhance plant growth and increase crop yields....
Microbial contamination is one of the greatest challenges faced by the food industry. Biological contaminants, such as bacteria and fungi, cause significant food waste, economic losses to food producers, and serious illnesses to over 2 billion people each year. Low temperature plasmas have shown great promise for the decontamination of microorganism and other contaminants, yet uptake of the...
Atmospheric pressure plasma (APP) technology, enabling to convert air molecules into multi-functional reactive oxygen and nitrogen species (RONS), has been of great interest and extensively investigated. In particular, air APP devices, working only with air and electricity, can potentially allow for ubiquitous supply of RONS, which can be applied in a wide range of fields such as medical,...
In the context of rapid population growth, climate change, and resource constraints, sustainable and smart agriculture has become essential. Obtaining high yields in agricultural production starts with planting seeds that germinate in high percentages and produce robust plants with minimal delay. The potential of seed irradiation with low temperature plasmas (cold plasmas, CP) for application...
The population growth represents a serious challenge for humankind due to the continuous increase in demand for food. The climate change is also presenting a significant factor on food production due to the change in weather patterns, pest appearance, water availability etc. Therefore it is necessary to develop new and efficient technologies that can enhance productivity while maintaining food...