Since 18 of December 2019 conferences.iaea.org uses Nucleus credentials. Visit our help pages for information on how to Register and Sign-in using Nucleus.

13–18 Oct 2014
Hotel Park Inn Pribaltiyskaya
Europe/Moscow timezone

The Dynomak: an Advanced Fusion Reactor Concept with Imposed-Dynamo Current Drive and Next-Generation Nuclear Power Technologies

17 Oct 2014, 14:00
4h 45m
Green 8-9 (Hotel Park Inn Pribaltiyskaya)

Green 8-9

Hotel Park Inn Pribaltiyskaya

Saint Petersburg, Russian Federation
Poster Poster 8

Speaker

Mr Derek Sutherland (University of Washington)

Description

A high-β spheromak reactor concept called the dynomak has been designed with an overnight capital cost that is competitive with conventional power sources. This reactor concept utilizes recently discovered imposed-dynamo current drive (IDCD) and a molten salt (FLiBe) blanket system for first wall cooling, neutron moderation and tritium breeding. Currently available materials and ITER developed cryogenic pumping systems were implemented in this design from the basis of technological feasibility. A tritium breeding ratio (TBR) of greater than 1.1 has been calculated using a Monte Carlo N-Particle (MCNP5) neutron transport simulation. High temperature superconducting tapes (YBCO) were used for the equilibrium coil set, substantially reducing the recirculating power fraction when compared to previous spheromak reactor studies. Using zirconium hydride for neutron shielding, a limiting equilibrium coil lifetime of at least thirty full-power years has been achieved. The primary FLiBe loop was coupled to a supercritical carbon dioxide Brayton cycle due to attractive economics and high thermal efficiencies. With these advancements, an electrical output of 1000 MW from a thermal output of 2486 MW was achieved, yielding an overall plant efficiency of approximately 40%.
Country or International Organisation USA
Paper Number FIP/P8-24

Primary author

Mr Derek Sutherland (University of Washington)

Co-authors

Dr George Marklin (University of Washington) Mr Kyle Morgan (University of Washington) Dr Nelson Brian (University of Washington) Dr Tom Jarboe (University of Washington)

Presentation materials