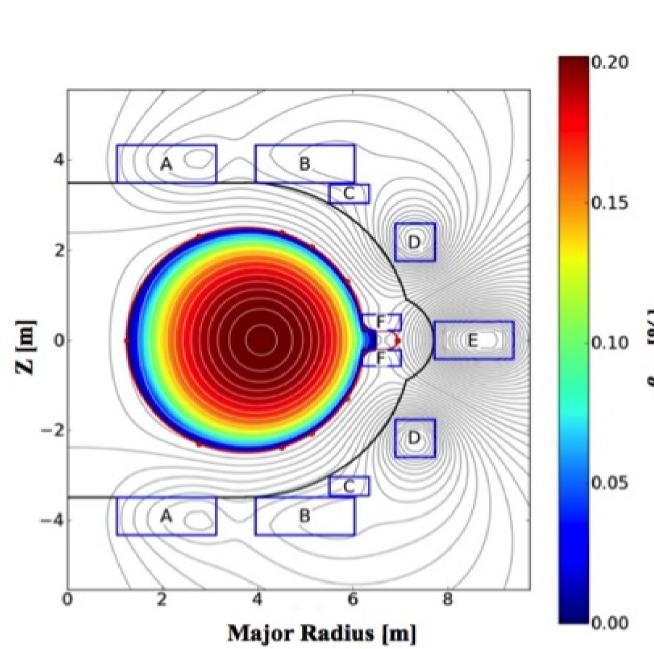

The Dynomak Reactor System¹

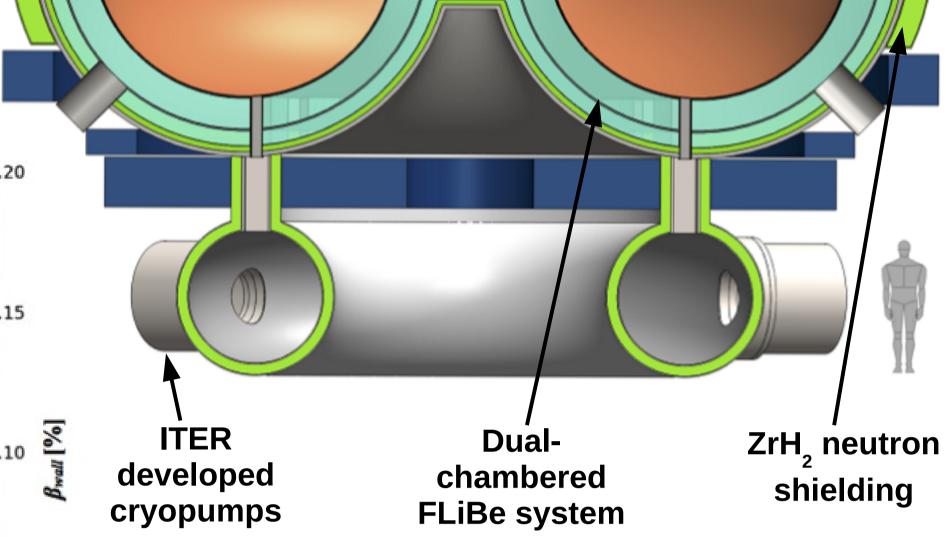
D.A. Sutherland, T.R. Jarboe, and the HIT-SI Team University of Washington, Seattle, WA, U.S.A.

25th International Atomic Energy Agency Fusion Energy Conference – St. Petersburg, Russia, October 13-18, 2014.

Work supported by the U.S. Department of Energy

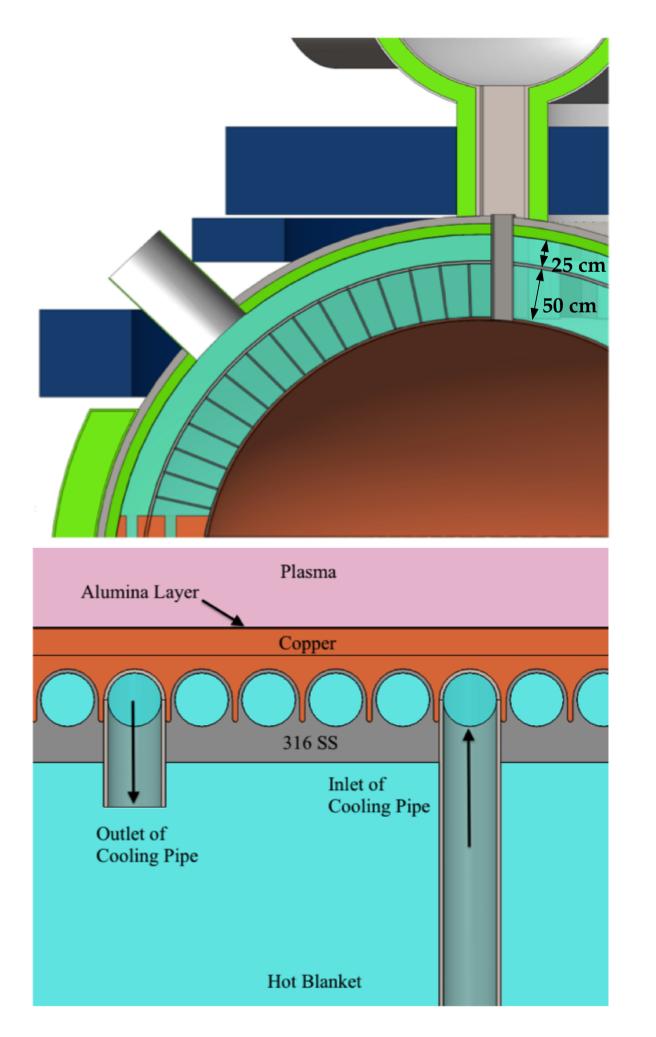


IDCD and superconducting coil set enables energy efficient spheromak reactor system


• IDCD perturbs and sustains a stable spheromak equilibrium.²

HIT - SIGO

- Dynamo current drive is achieved without presence of gross plasma instabilities.
- Six inductive helicity injectors provide necessary edge currents and magnetic fluctuations ($\delta B/B \sim 10^{-4}$) for current penetration.
- An enhanced Grad-Shafranov code imposed marginal Mercier stability on each flux surface with $\lambda a = 2.4$ and an aspect ratio of 1.5.
- An optimized flux conserver provides high wallaveraged β of 16.6%.
- YBCO superconductors were used for coil set that are sub-cooled with liquid nitrogen.
- Twelve ITER-developed cryopumps connected to pumping manifold.
- Helium concentration limited to 3%.


Coil Set	MA-turns			
Α	-16.3			
B	-5.2			
С	0.4			
D	-11.0			
E	16.8			
F	2.6			

FliBe immersion blanket system allows for sufficient TBR of 1.125

- FLiBe was chosen as the liquid blanket material.
- A dual-chambered, pressurized blanket system enables single working fluid design.
- Minor radial cooling pipes connect pressurized outer blanket to first wall

	58.5
<w<sub>n> [MWm⁻²]</w<sub>	4.2
P _{thermal} [MW]	2486
P _{aux} [MW]	58.5
P _{electric} [MW]	1000
Thermal efficiency [%	6] ≥ 45
Global efficiency [%]	<u>≥</u> 40

Dynomak reactor system is most attractive of recently designed DEMOs

 Use of superconductors in 	
a compact design allows for	
low recirculating power	
fraction.	

- IDCD enables energy efficient current drive.
- Highest neutron wall loading out of reactor designs.
- FLiBe blanket offers high blanket power density due to excellent moderation capabilities.

Parameter	Compact Stellarator*	Tokamak*	Spherical Tokamak*	Dynomak
R _° [m]	7.1	6.0	3.2	3.75
A = R _o /a	4.5	4.0	1.7	1.5
I _p [MA]	3.3	11.6	26.2	41.7
P _{fusion} [MW]	1794	2077	2290	1953
P _{aux} [MW]	18	100	60	58.5
Q _p – Plasma gain	100	20.8	38.2	33
Q _e – Engineering gain	6.5	3.4	2.8	9.5
<w<sub>n> [MWm⁻²]</w<sub>	2.8	3.0	3.4	4.2
P _{electric} [MW]	1000	1000	1000	1000

J.E. Menaru, et al., Prospects for pilot plants based on the tokamak, spherical tokamak, and stellarator, Nuc. Fusion 51 (2011).

DT

DD

Dynomak development path includes multiple upgrades and ITER data

cooling system.

- FLiBe system couples to supercritical CO_2 secondary cycle with a thermal efficiency of greater than 45%.
- Global blanket temperature change is 100 °C.

Dynomak is economically competitive with conventional power sources

- Cost of reactor unit was determine via:
 - Scalings from the HIT-SI device
 - ITER priced components.
 - Estimations of bulk and secondary cycle costs from fission power plants.
- The total overnight capital cost is estimated to be \$2.713 billion.
- Overnight capital cost of this reactor system undercuts fission and is on par with coal-fired power plants.
- First-wall is made of relatively cheap materials – reasonable maintenance costs
- Liquid immersion blanket does not require repair – modest introduction of Li-6 over time.

Summary

- A high- β spheromak reactor concept has been designed
- Overnight capital cost is competitive with conventional power sources.

• Development path begins with pulsed, IDCD scaling experiment (HIT-SIX). Cost of fusion development is distributed. Total cost estimated at

plant.

ITER

Startup

Time HIT **HIT-PX HIT-PoP HIT-SIX** Add HTSC IDCD scaling Confinement confirmation development magnets less than 1 GW power • Copper coils Water cooling • Copper coils 10 second Steady-state 2 second pulse pulse operation

HIT-Pilot **HIT-FNSF** • Add SC-CO₂ Add tritium • FLiBe coolant secondary Confirm TBR cycle Materials • 20 MWe testing • Prepare for scale-up to 1 GWe

with a competitive overnight capital cost.

• An FliBe immersion blanket allows for sufficient TBR.

 Conventional nuclear materials and ITER-developed technologies were used.

• Superconducting coil set and IDCD enable low recirculating power fraction.

• Future work includes: • HIT-SI3 injector physics. • Developing validated computer codes. • Demonstrate IDCD scaling in HIT-SIX

¹ D.A. Sutherland, et al., The dynomak: An advanced spheromak reactor concept with imposed-dynamo current drive and next-generation nuclear power technologies, Fus. Eng. Design 89 (2014) 4, 412-425.

² B.S. Victor, et al., Sustained spheromaks with ideal n = 1 kink stability and pressure confinement, *Phys. Plasmas* **21** (2014) 082504.