On the eve of component procurement and with a substantially updated Research Plan [1] describing the pathway to achievement of inductive and steady state burning plasma operation on ITER, the present physics basis for the first ITER tungsten (W) divertor is outlined, focusing on the main design and operational driver: steady state and transient target power fluxes [2]. With the dimensions...
Since 2017, significant efforts have been made by Chinese community for the physics and engineering design of Chinese Fusion Engineering Testing Reactor (CFETR) [1], which is proposed to bridge the gap between ITER and DEMO. One of the key challenges is that the divertor solution for CFETR must meet requirements beyond that of ITER. For the standard CFETR operation with the fusion power up to...
Predictions for the scrape-off layer (SOL) in future fusion devices based on empirical scalings imply extremely large parallel heat flux, q|| ~10 GW/m2, which is exacerbated for high-field concepts that may enable a Compact Pilot Plant (CPP) as recommended by a recent US strategic planning assessment. Here we discuss the framework of a proposed ~10 year program to more firmly establish the...
Dealing with power exhaust is one of the most difficulty tasks in foreseen fusion reactor based on magnetic confinement. It is commonly recognized that the standard Single Null Divertor (SND) configuration can face some difficulties in providing a scalable solution based on H-mode tokamak operation compatible with present solid divertor target technological solutions. To provide a safer...
The divertor target is the most intense plasma-surface interaction area in the tokamak. To keep the lifetime of the device and maintain long pulse discharges, the power load and particle removal control become to be the critical issues. The lower graphite divertor of EAST tokamak is the main limitation to the achievement of further high-power long-pulse discharges [1]. To solve this problem,...