A fast-flowing liquid metal (e.g. Lithium, Tin) divertor (FFLMD) is an attractive option that can take all (or almost all) the heat flux coming to the PFCs. A generic fusion reactor divertor with “fast” flow generally requires a ~1-20 m/s speed with approximately mm to cm thickness. Balancing the heat flow into the divertor and carrying capacity of the liquid metal (LM) flow is the main...
The crucial stepping stone between ITER and a fusion power plant is generally foreseen as a demonstration power plant (DEMO). The European approach foresees only a modest upscaling in dimensions from ITER but due to the large increase in fusion power and subsequently strongly increased power crossing the separatrix [1] this implies increased challenges for power exhaust. As a risk mitigation...
The divertor for a practical fusion power producing facility very likely must dissipate the intense heat flux emerging from the plasma core volumetrically, rather than allowing it to strike a material surface directly. We have proposed [1, 2] that a dense cloud of lithium vapor be contained in the divertor region by local evaporation from, and condensation onto, capillary porous structures...