Description
All submissions accepted as "Poster" should provide a poster conforming to the rules published in the meeting announcement. Posters will be shown outside of Board Room C near by the coffee area.
Board numbers correspond to Indico [ID] numbers.
Abstract
The experimental and modeling have shown that the advanced snowflake divertor can well mitigate heat flux loading onto target surfaces due to the smaller perpendicular incident angle and larger magnetic expansion compared with conventional divertor [1,2]. But, the large magnetic expansion of snowflake may lead to a serious problem of particle exhaust, which results in the core...
Divertor is one of the key components in Tokamak. The control of heat flux and erosion of the divertor target is one of the grand challenges facing the design and operation of next-step high-power steady-state fusion. It is essential to efficiently dissipate power in the divertor to ensure the maximum steady-state power load at the divertor target below 10 ~ 15 $MW/m^2$. In addition, adequate...
The design of a DEMO divertor is an important task which defines the reflux of fuel and helium neutral particles to the plasma and finally determines the particle exhaust and pumping efficiency. For the conventional divertor, optimization of the dome height and its effect on neutral compression, position of the pumping ports as well as the effect of neutral gas screening by electrons in the...
The main objective for JT-60SA is to study magnetically confined plasma in near-fusion scenarios in support of ITER and DEMO. One of the major open issues is to demonstrate divertor heat and particles handling in ITER-like plasma conditions. One of the options for JT-60SA divertor in the Integrated Research phase II is to use Tungsten as plasma facing component[1], while in the initial...
The development of a reliable solution for the power and particle exhaust in a reactor is recognized as a major challenge towards the realization of DEMO [1]. Alternative magnetic configurations such as Double Null, Snowflake, X and Super-X divertors are considered as a promising solution to reduce the heat load on the divertor targets even if their scalability on a DEMO size device is a...
The divertor configuration defines the power exhaust capabilities of DEMO as one of the major key design parameters and sets a number of requirements on the tokamak layout, including port sizes, PF coil positions, and size of TF coils. It also requires a corresponding configuration of plasma-facing components and a remote handling scheme to be able to handle the cassettes and associated...
As a large fusion machine with high power density, DEMO requires sufficient capability of power handling at its boundary region. Apart from applying impurity seeding to actively dissipate power via radiation to cope with this demand, exploring divertor configurations that may be more advantageous than the conventional single-null in handling high power flux crossing the separatrix is also...
The next step after ITER is the demonstration of stable electricity production with a fusion reactor. Key design performances will have to be met by the corresponding power plant demonstrator (DEMO), fulfilling a large number of constraints. System codes such as SYCOMORE, by simulating all the fusion power plant sub-systems, address those questions. SYCOMORE uses an advanced two points model...
In a next step fusion device like ITER or DEMO, the unmitigated power loads at the divertor targets will considerably exceed the allowed material limits which are foreseen to be in the order of $5-10\,\mathrm{MWm}^{-2}$. Therefore, to prevent severe damage of plasma facing components and erosion of target material, a significant amount of power has to be exhausted via impurity radiation. For...
Power exhaust scenario for the feasible DEMO plasmas and the divertor design have been studied with a high priority in the steady-state Japanese (JA) DEMO with the fusion power of 1.5 GW-level and the major radius of 8 m-class. The power exhaust concept requires large power handling in the SOL and divertor, i.e. Psep~250 MW, and Psep/Rp~30 MWm-1 corresponds to 1.8 times larger than ITER. Long...
Operating at 12 tesla on axis with a plasma current of 7.5 MA and total fusion power of 100 MW, SPARC [1] is projected to have a power exhaust heat flux width of 0.2 mm with an unmitigated parallel heat flux of up to 30 GW m-2 entering the divertor. While recent UEDGE modelling of other high-field tokamaks designs, ADX and ARC, indicates that long-leg divertors can dramatically improve...
The fusion power of China Fusion Engineering Test Reactor (CFETR) [1] is proposed to achieve the level of gigawatt, which implies the critical issue of power exhaust by divertor. Impurity radiation is an effective way to reduce the heat load onto the divertor target. For CFETR, to reduce the tritium retention and increase the lifetime of plasma-facing components, full-tungsten wall would be...
Systems codes, such as PROCESS, model all systems of a power plant to investigate large numbers of design points. They are used for scoping studies and to identify areas of feasible design points.
Multi-dimensional modelling of the plasma Scrape-Off-Layer (SOL), divertor and seeded impurities is too computationally intensive to be incorporated directly into a systems code. Divertor...
The EUROfusion roadmap [1] has recognized the exhaust of large heat loads as one of the most critical issue to solve for the generation of electrical power with a Demonstration Fusion Power Plant (DEMO) by 2050. This condition is particularly challenging in the material facing the plasma in the divertor, where detached conditions must be guaranteed for safe operations of the machine. According...