Since 18 of December 2019 conferences.iaea.org uses Nucleus credentials. Visit our help pages for information on how to Register and Sign-in using Nucleus.

28 October 2019 to 1 November 2019
Vienna International Centre
Europe/Vienna timezone
Announcement and Call for Papers

Production of Theranostic 153Samarium-labelled Polystyrene Microspheres for Hepatic Radioembolization

29 Oct 2019, 17:00
15m
M1 (M Building)

M1

M Building

S6.

Speaker

Chai Hong Yeong (Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia)

Description

Introduction: Hepatic radioembolization is a minimally invasive procedure involving intrarterial administration of radioembolic microparticles for the treatment of liver tumours. A biocompatible polystyrene (PS) microparticles containing Samarium-153 (153Sm) were developed for hepatic radioembolization therapy. The incorporation of 153Sm that possessed both diagnostic gamma energy and therapeutic beta radiation has made it a theranostic radioembolic agent for hepatic radioembolization.

Methods: The 152Sm-labelled PS microparticles were prepared using solid-in-oil-in-water solvent evaporation method. The 152Sm-labelled PS microparticles were neutron activated to 153Sm(Eβmax = 807.6 keV, half-life= 46.3 hours) through 152Sm(n,γ)153Sm reaction in a nuclear reactor with a neutron flux of 2.0 × 10^12 n.cm-2.s-1. Physicochemical characterization of the microparticles, gamma spectrometry and in vitro radiolabeling studies were performed to study the performance and stability of the microparticles before and after neutron activation.

Results: The 153Sm-labelled PS microparticles achieved a nominal activity of 4.0 Gbq.g-1 after 6 hours neutron activation. Scanning electron microscope and particle size analysis suggest the microparticles remained spherical with the diameter within 15–60 μm after neutron activation. No long half-life radioimpuirties were found in the samples as indicated by gamma spectrum of the microparticles. The 153Sm-labelled PS microparticles was found to have a radiolabeling efficiency of more than 95% in saline and blood plasma over 480 hours.

Conclusion: The favorable microparticles and radiation characteristics along with excellent radiolabeling efficiency have rendered the 153Sm-labelled PS microparticles as potentially theranostic agent for hepatic radioembolization. This study described a safer method to prepare the microparticles for hepatic radioembolization as the preparation does not involve any harmful ionizing radiation.

Primary author

Chai Hong Yeong (Department of Biomedical Imaging, Faculty of Medicine, University of Malaya, 50603 Kuala Lumpur, Malaysia)

Co-authors

Dr Azahari Kasbollah (Malaysian Nuclear Agency) Prof. Basri Johan Jeet Abdullah (Department of Biomedical Imaging, University of Malaya Medical Centre, Kuala Lumpur, Malaysia) Dr Yin How Wong (School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, Malaysia) Ms Hun Yee Tan (Ministry of Health, Malaysia)

Presentation materials