Fonck et al., OV/5-4: H-mode and Non-Solenoidal Startup in the Pegasus Ultralow-A Tokamak

Scientific Quality: Recent Achievements

- Non-solenoidal startup via Local Helicity Injection
 - $I_p = 0.18$ MA for injected $I_{ini} = 6$ kA
 - Power balance model for predictive $I_{p}(t)$
 - Resistive MHD simulation: current generation mechanism = reconnecting helical current streams
 - Provides access to stable $I_N \ge 10$ regime
- H-mode and ELM characteristics at A ~ 1
 - Ready access to H-mode via ohmic heating only
 - P_{IH} threshold increases rapidly as A -> 1
 - Detailed J_{edae}(R,t) measured through ELM cycle

1.0

1.5

2.0

2.5

Aspect Ratio

NIMROD Simulation PEGASUS Highspeed Imaging

> ALIG²⁷ CMOD²

3.0

3.5

J_{edae}(R, t) Through Type I ELM

Relevance to Fusion Energy: Critical Issues Addressed

- Localized Helicity Injection
 - Non-solenoidal startup capability eliminates need for central solenoid
 - Startup hardware removable before nuclear phase
 - J_{edge}(R,t) modifier for edge plasma control
- Advanced tokamak physics
 - Access to detailed nonlinear dynamics of H-mode edge \int_{-1}^{1}
 - Potential access to high I_N , β_T regime @ A ~ 1
- Supporting Comments: Next Steps
 - Near-term emphasis on predictive understanding of Helicity injection startup for application on larger facilities (NSTX-U)