T_e prediction with TRANSP-GLF23/TGLF for baseline H-mode JET-ILW discharges

Fixed simulation setting used
- Core T_e and T_i prediction with prescribed n_e profiles
- Pedestal T_e prescribed by HRTS at rho=0.9. Pedestal T_i = T_e
- Turbulent transport computed by GLF23 or TGLF + Neoclassical transport by NCLASS
- Uniform radiation profile input
- Uniform Zeff profile input assuming Be is the only impurity.
- Rotation profile prescribed by CX
- Heating and particle source terms calculated consistently by NUBEAM and TORIC

TRANSP-GLF23 shows a reasonable T_e reproducibility, but it is subject to the ν^* regime i.e. under-prediction at low ν^* and over-prediction at high ν^*.

The impact of ν^* is less significant in TRANSP-TGLF where the trapped particle physics is modelled in a more complete way, and T_e predicted agrees much better with measurement.