First operational phase (OP1.1): five graphite inboard limiters define a 3D helical scrape off layer (SOL)

Plasma parameters strongly correlated to magnetic topology

Comparison with IR confirms heat load asymmetry \(\sim L_c \)

Near and far SOL feature different power widths \(\lambda_{\text{all}} \)

Scan of anomalous \(D \) shows somewhat simple SOL scaling of power flux level \(q_{\text{peak}} \) and power width \(\lambda_{\text{all}} \)

\(\lambda \) increase causes stronger poloidal localization of impurities and line emission due to local compression of long \(L_c \)

Power flux mitigation by radiative edge cooling in future island divertor scenarios \(\rightarrow \) strong accumulation in 5/5 islands

Conclusion:
- Startup field configuration facilitates the investigation of links between PSI and magnetic topology
- 3D modeling and modeling results show a strong correlation between PSI and changes in magnetic topology
- Downstream power \(\lambda_{\text{all}} \) related to upstream \(T_e \), decreases \(\lambda_{\text{all}} \) by scaling factor of 2.5-3.5
- Seeded impurities concentrate in longer flux tubes, stronger accumulation for increased \(\lambda_{\text{all}} \) and clear sub-confinement expected for considered 5S standard island divertor scenario

Acknowledgments:
This work was supported by the U.S. Department of Energy (DE-SC0014210) and by startup funds of the Department of Engineering Physics at the University of Wisconsin-Madison. This work was also supported by the Los Alamos National Laboratory, Department of Engineering Physics, and the Los Alamos National Laboratory Division of the Laboratory of High Performance Computing (LHPC). This work is part of a larger collaboration that includes funding from the Los Alamos National Laboratory (Los Alamos, NM).