Deuterium retention and melting behavior in Toughened, Fine-Grained Recrystallized Tungsten

Background & Purpose
- TFGR-W was newly developed W materials and showed improved ductility.
- In this study, the hydrogen isotope irradiation effects were investigated, in order to qualify TFGR-W for the use for future fusion reactors.

In this study, the hydrogen isotope irradiation effects were investigated, in order to qualify TFGR-W for the use for future fusion reactors.

Melting behavior
- In order to avoid significant roughening and cracking, TFGR-W should not be used under surface melting conditions.

Deuterium retention
- At low temperature of ~600 K (close to water coolant temperature of W divertor of a recent DEMO concept), D retention in TFGR-W could be greatly higher than that in pure W.
- At high temperature of ~800 K (surface temperature of ferritic-martensitic steel blankets), TFGR-W with TaC dispersoids should be used for reduced retention.