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A self-consistent core, pedestal and equilibrium model
is needed for reliable prediction of fusion performance

Core and pedestal regions of the
plasma are strongly coupled to
one another:

• Pedestal =) Core
Pedestal affects core pressure
via the boundary condition

• Core =) Pedestal
Core pressure affects the
pedestal via the Shafranov shift
of the equilibrium, which
improves stabilization of edge
MHD instabilities
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Typical core transport studies assume that the pedestal
structure is given and is fixed

Equilibrium

Pedestal stabilityCore transport

Sources

• Pedestal held fixed while only
core, sources, and equilibrium
are iterated to self-consistency

• Can be highly inaccurate for
poor initial assumptions about
the pedestal

• Inconsistency between
predicted �?

n

and initially
assumed �

n

• Different predictions
depending on initial
assumptions of �

n
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In this work we self-consistently account
for the core-pedestal interaction

Equilibrium

Pedestal stabilityCore transport

Sources

• Pedestal, core, sources and
equilibrium are all iterated to
consistency

• Starting �
n

is not a fixed
assumption, but rather the
initial guess to a non-linear
root-finding problem

• A unique solution with
self-consistent core and
pedestal predictions

• Final solution independent of
initial guess for �

n
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Outline

1 Iterative workflow and coupling scheme to robustly find
self-consistent solution

2 Self-consistent optimization of fusion power for ITER
baseline scenario

3 Accelerated core-pedestal predictions with
neural-network based models
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Technique used to couple core-pedestal models based on
expectation that profiles should be continuous and smooth

Four radial zones based on the dominant H-mode physics:
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EPED1

TGYRO

Smooth profiles are obtained by
integrating piece-wise linear z

EPED1 model finds H-mode
pedestal profile with maximum
stable height and width

TGYRO finds z for which fluxes
balance sources in the core

z is zero on axis

Transition region adapts z
consistent with core transport,
to the one that is consistent
with MHD stability in the
pedestal
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Iterative workflow robustly and efficiently finds
the self-consistent steady-state coupled solution
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Physics inputs to the workflow:

• Pedestal model
� Plasma shape, Bt and Ip
� ne,ped and Ze↵,ped

� Initial guess for �n

• Transport code
� Configuration of particle,

heat, current and
momentum sources

Illustrative example: DIII-D ITER
baseline scenario discharge
with low torque and electron
heating
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Start with EPED1 to obtain an initial equilibrium and profiles
�
n,guess = 75%�

n,exp = 1.3
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TGYRO evolves core with pedestal as boundary condition
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Update sources, current profile and equilibrium ! new �
n
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Pedestal calculation is updated based on the new value of
global pressure �

n

, and loop is iterated until convergence
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Pedestal calculation is updated based on the new value of
global pressure �

n

, and loop is iterated until convergence
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Converged solution compares very well with
measurements across the whole plasma
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Converged solution is insensitive to
the initial guess of global pressure �

n,guess

• Workflow converges to
the same solution for a
broad range of initial
�
n,guess

• �
n,guess is the initial

guess to a non-linear
root-finding problem

• Faster convergence for
�
n,guess ⇠ �

n,solution
Initial guess Self-consistent iteration

Self consistent
solution

16 O. Meneghini - 2016 IAEA FEC Kyoto



Self-consistent core-pedestal optimization of ITER baseline
scenario with n

e,ped and Z
e↵ ,ped as actuators

1 Iterative workflow and
coupling scheme to robustly
find self-consistent solution

2 Self-consistent optimization
of fusion power for ITER
baseline scenario

3 Accelerated core-pedestal
predictions with
neural-network based
models
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Initial conditions based on:
Budny,R.V. (2009) Nuclear Fusion 49 115
Comparisons of predicted plasma
performance in ITER H-mode plasmas
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2D scan in n
e

, Z
e↵

identifies a family of self-consistent
solutions which satisfy ITER baseline Q � 10 target
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• for different values of n

e

and Z
e↵
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High fusion performance cases share similar values of
pedestal pressure and bootstrap current

12
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Fusion gain  Q

High fusion performance:
• for different values of n

e

and Z
e↵

• but similar values of pedestal pressure and bootstrap current
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Lower fusion power conditions due to peeling or ballooning
modes depending on pedestal collisionality

Peeling modes
limited

Ballooning modes
limited

Low
collisionality

High
collisionality

12

4

8

6

10

Fusion gain  Q

High fusion performance:
• for different values of n

e

and Z
e↵

• but similar values of pedestal pressure and bootstrap current
• where pedestal height is peeling-ballooning limited
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First-principles core-pedestal transport simulation are
computationally demanding and still require supervision

Days/Hours Minutes/Seconds Milliseconds

Physics
Validation

Planning &
Engineering

Control

One of a Kind Supervised Automatic

Loose Coupling
Integration

Tight Coupling
Integration

Standalone

First Principles
Models

Reduced Models Elementary
Models

These self-consistent coupled
core-pedestal simulations

FI
DE

LI
TY

SPEE
D

1+ hour for each self-consistent iteration (at least 5+ iterations)
• EPED1 ⇠ 20 mins on HPC with hundreds of cores
• TGLF ⇠ secs but transport solution requires 1000’s of evaluations

Elementary models faster, but at the cost of reduced physics fidelity

) need to break traditional modeling speed-vs-fidelity tradeoff (
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Neural Network paradigm can provide the missing link
towards functional whole device modeling simulations

Days/Hours Minutes/Seconds Milliseconds

Physics
Validation

Planning &
Engineering

Control

One of a Kind Supervised Automatic

Loose Coupling
Integration

Tight Coupling
Integration

Standalone

First Principles
Models

Reduced Models Neural Network
Models

Self-consistent core-pedestal
coupled simulations with NN

FI
DE

LI
TY

SPEE
D

Neural networks can be used to produce a non-linear multidimensional
regression to a database of high fidelity calculations

• NN models are fast and yet retain fidelity of training simulations
• Regularization techniques used to obtain smooth NN output
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Accelerated EPED1 and TGLF models with neural networks
to enable routine coupled core-pedestal transport studies

1 Iterative workflow and
coupling scheme to robustly
find self-consistent solution

2 Self-consistent optimization
of fusion power for ITER
baseline scenario

3 Accelerated core-pedestal
predictions with
neural-network based
models
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TGYRO simulations with
coupled core-pedestal NN
models run in few seconds
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EPED1-NN model closely reproduces EPED1 predictions
Trained across input parameter range of multiple devices

10 EPED input
parameters to predict
p
ped

, w
ped

Trained on database
of ⇠20,000 EPED1 runs
(2 million CPU hours)

DIII-D: 3,000 runs

KSTAR: 700 runs

JET: 200 runs

ITER: 15,000 runs

⇥109 speedup
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TGLF-NN model closely reproduces TGLF predictions
Trained on ion energy transport DIII-D experiments

23 TGLF input
parameters to predict
gyro-Bohm fluxes
Qe, Qi, �e, ⇧i

Trained on database
of 32,000 TGLF runs
based on DIII-D
experiments aimed at
probing ion energy
transport (power and
torque scans)

⇥106 speedup
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Validated TGYRO simulations with coupled NN models
against 200 time slices from DIII-D ion transport experiments
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• For this dataset on average �
n

converges to ⇠ 90%�
n,exp

• Robust NN models ! convergence does not require supervision
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Conclusion: enabling core-pedestal coupled workflow,
and increasing speed by millions with neural networks

1 Iterative workflow robustly finds self-consistent solution
without pedestal height/width as free parameters

2 Scan in ne,ped as well as Ze↵,ped has identified a family of
self-consistent solutions for which Q � 10 ITER baseline
target can be achieved

3 TGLF-NN and EPED1-NN accelerate core/pedestal
calculations and provide the missing link for functional
WDM simulations and control

Next step: core , pedestal , SOL coupling
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