Development and Validation of a Self-Consistent Core, Pedestal, and Equilibrium Model

O. Meneghini¹,

T.L. Cordemiglia², P.B. Snyder¹, J. Candy¹, J.M. Park³, S.P. Smith¹, B. Grierson⁴, D.L. Green³, C. Holland⁵, W. Elwasif³, T. Luce¹

¹General Atomics, San Diego, CA
 ²Politecnico di Torino, ITA
 ³Oak Ridge National Laboratory, TN
 ⁴Princeton Plasma Physics Laboratory, NJ
 ⁵University California San Diego, CA

Presented at the 2016 IAEA Meeting Kyoto, Japan 16-20 November 2016

A self-consistent core, pedestal and equilibrium model is needed for reliable prediction of fusion performance

Core and pedestal regions of the plasma are **strongly coupled** to one another:

 Pedestal ⇒ Core Pedestal affects core pressure via the boundary condition

• Core \Longrightarrow Pedestal

Core pressure affects the pedestal via the Shafranov shift of the equilibrium, which improves stabilization of edge MHD instabilities

$$P_{\rm fus} \propto \beta_{\rm n}^2 \Leftrightarrow p_{\rm ped}^2$$

Typical core transport studies assume that the pedestal structure is given and is fixed

- Pedestal held fixed while only core, sources, and equilibrium are iterated to self-consistency
- Can be highly inaccurate for poor initial assumptions about the pedestal

- Inconsistency between predicted β_n^{\star} and initially assumed β_n
- Different predictions depending on initial assumptions of β_n

In this work we self-consistently account for the core-pedestal interaction

- Pedestal, core, sources and equilibrium are **all iterated to consistency**
- Starting β_n is not a fixed assumption, but rather the **initial guess** to a non-linear root-finding problem

- A **unique solution** with self-consistent core and pedestal predictions
- Final solution independent of initial guess for β_n

1 Iterative workflow and coupling scheme to robustly find self-consistent solution

2 Self-consistent optimization of fusion power for ITER baseline scenario

3 Accelerated core-pedestal predictions with neural-network based models

Technique used to couple core-pedestal models based on expectation that profiles should be continuous and smooth

Four radial zones based on the dominant H-mode physics:

Smooth profiles are obtained by integrating piece-wise linear z

EPED1 model finds H-mode **pedestal** profile with maximum stable height and width

TGYRO finds *z* for which fluxes balance sources in the **core**

z is zero on **axis**

Transition region adapts *z* consistent with core transport, to the one that is consistent with MHD stability in the pedestal

Iterative workflow robustly and efficiently finds the self-consistent steady-state coupled solution

CVFIT

Physics inputs to the workflow:

- Pedestal model
 - Plasma shape, B_t and I_p
 - $n_{e,\mathrm{ped}}$ and $Z_{\mathrm{eff,ped}}$
 - Initial guess for $eta_{
 m n}$
- Transport code
 - Configuration of particle, heat, current and momentum sources

Illustrative example: DIII-D ITER baseline scenario discharge with low torque and electron heating

Start with EPED1 to obtain an initial equilibrium and profiles $\beta_{n,\text{guess}} = 75\% \beta_{n,\text{exp}} = 1.3$

TGYRO evolves core with pedestal as boundary condition

Update sources, current profile and equilibrium ightarrow new $eta_{ m n}$

Converged solution compares very well with measurements across the whole plasma

Converged solution is insensitive to the initial guess of global pressure $\beta_{n,guess}$

- Workflow converges to the same solution for a broad range of initial $\beta_{n,guess}$
- $\beta_{n,guess}$ is the initial guess to a non-linear root-finding problem

• Faster convergence for $\beta_{n,guess} \sim \beta_{n,solution}$

Self-consistent core-pedestal optimization of ITER baseline scenario with $n_{\rm e,ped}$ and $Z_{\rm eff,ped}$ as actuators

- 1 Iterative workflow and coupling scheme to robustly find self-consistent solution
- 2 Self-consistent optimization of fusion power for ITER baseline scenario
- 3 Accelerated core-pedestal predictions with neural-network based models

Initial conditions based on:

Budny,R.V. (2009) Nuclear Fusion **49** 115 Comparisons of predicted plasma performance in ITER H-mode plasmas

2D scan in $n_{ m e}$, $Z_{ m eff}$ identifies a family of self-consistent solutions which satisfy ITER baseline ${ m Q}\geq 10$ target

High fusion performance:

- for different values of $n_{\rm e}$ and $Z_{\rm eff}$

High fusion performance cases share similar values of pedestal pressure and bootstrap current

High fusion performance:

- for different values of $n_{
 m e}$ and $Z_{
 m eff}$
- but similar values of pedestal pressure and bootstrap current

Lower fusion power conditions due to peeling or ballooning modes depending on pedestal collisionality

High fusion performance:

- for different values of $n_{
 m e}$ and $Z_{
 m eff}$
- but similar values of pedestal pressure and bootstrap current
- where pedestal height is peeling-ballooning limited

First-principles core-pedestal transport simulation are computationally demanding and still require supervision

1+ hour for each self-consistent iteration (at least 5+ iterations)

- EPED1 \sim 20 mins on HPC with hundreds of cores
- TGLF \sim secs but transport solution requires 1000's of evaluations

Elementary models faster, but at the cost of reduced physics fidelity

 \Rightarrow need to break traditional modeling speed-vs-fidelity tradeoff \Leftarrow

Neural Network paradigm can provide the missing link towards functional whole device modeling simulations

Neural networks can be used to produce a non-linear multidimensional regression to a database of high fidelity calculations

- NN models are fast and yet retain fidelity of training simulations
- Regularization techniques used to obtain smooth NN output

Accelerated EPED1 and TGLF models with neural networks to enable routine coupled core-pedestal transport studies

- 1 Iterative workflow and coupling scheme to robustly find self-consistent solution
- 2 Self-consistent optimization of fusion power for ITER baseline scenario
- 3 Accelerated core-pedestal predictions with neural-network based models

TGYRO simulations with coupled core-pedestal NN models run in few seconds

EPED1-NN model closely reproduces EPED1 predictions Trained across input parameter range of multiple devices

10 EPED input parameters to predict $p_{\rm ped}$, $w_{\rm ped}$

Trained on database of ~20,000 EPED1 runs (2 million CPU hours)

DIII-D: 3,000 runs

KSTAR: 700 runs

JET: 200 runs

ITER: 15,000 runs

 $imes 10^9$ speedup

24

TGLF-NN model closely reproduces TGLF predictions Trained on ion energy transport DIII-D experiments

23 TGLF input parameters to predict gyro-Bohm fluxes $Q_e, Q_i, \Gamma_e, \Pi_i$

Trained on database of 32,000 TGLF runs based on DIII-D experiments aimed at probing ion energy transport (power and torque scans)

 $imes 10^6$ speedup

Validated TGYRO simulations with coupled NN models against 200 time slices from DIII-D ion transport experiments

- For this dataset on average β_n converges to $\sim 90\% \beta_{n,exp}$
- Robust NN models \rightarrow convergence does not require supervision

- Iterative workflow robustly finds self-consistent solution without pedestal height/width as free parameters
- 2 Scan in $n_{\rm e,ped}$ as well as $Z_{\rm eff,ped}$ has identified a family of self-consistent solutions for which $Q \ge 10$ ITER baseline target can be achieved
- 3 TGLF-NN and EPED1-NN accelerate core/pedestal calculations and provide the missing link for functional WDM simulations and control

Next step: core \Leftrightarrow pedestal \Leftrightarrow SOL coupling

