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A self-consistent core, pedestal and equilibrium model

is needed for reliable prediction of fusion performance

Core and pedestal regions of the
plasma are strongly coupled to
one another:

e Pedestal — Core
Pedestal affects core pressure
via the boundary condition

e Core — Pedestal
Core pressure affects the
pedestal via the Shafranov shift 2 2
of the equilibrium, which Phus 0 By & Ppea
improves stabilization of edge
MHD instabilities
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Typical core transport studies assume that the pedestal

structure is given and is fixed
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¢ Pedestal held fixed while only .

core, sources, and equilibrium ° IncorI\slstenc*y between

are iterated to self-consistency predicted 57 and initially

. . assumed g,

e Can be highly inaccurate for . L

poor initial assumptions about * Different predictions

the pedestal depending on initial

assumptions of 3,
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In this work we self-consistently account
for the core-pedestal interaction
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e Pedestal, core, sources and
equiliorium are all iterated to
consistency

o Starting 3, is not a fixed
assumption, but rather the
initial guess to a non-linear
root-finding problem

¢ A unique solution with
self-consistent core and
pedestal predictions

¢ Final solution independent of
initial guess for 53,
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1 Iterative workflow and coupling scheme to robustly find
self-consistent solution

2 Self-consistent optimization of fusion power for ITER
baseline scenario

3 Accelerated core-pedestal predictions with
neural-network based models
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Technique used to couple core-pedestal models based on

expectation that profiles should be continuous and smooth

Four radial zones based on the dominant H-mode physics:
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Smooth profiles are obtained by
infegrating piece-wise linear z
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EPED1 model finds H-mode
pedestal profile with maximum
stable height and width

TGYRO finds z for which fluxes
balance sources in the core

z is zero on axis

Transition region adapts =
consistent with core transport,
to the one that is consistent
with MHD stability in the
pedestal
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Iterative workflow robustly and efficiently finds

the self-consistent steady-state coupled solution

Core-pedestal transport modeling

OMFIT
Core profiles Pedestal structure
TGYRO IPS EPED1
Turbulent Model equilibria
transport + pedestal profiles
TGLF l&— || TOQ w/KBM constraint
)
~
Neoclassical Peeling-ballooning|'
transport MHD stability
NEO ELITE
| | Current evolution Closed boundary |,
and sources equilibrium
ONETWO EFIT
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Physics inputs to the workflow:

e Pedestal model
- Plasma shape, B, and I,
~ MNe,ped and Zeff,ped
- Initial guess for 3,

e Transport code

- Configuration of particle,
heat, current and
momentum sources

lllustrative example: DIII-D ITER
baseline scenario discharge
with low torque and electron
heating
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Start with EPED1 to obtain an initial equilibrium and profiles

ﬁn,guess = 75% Bn,exp =1.3
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TGYRO evolves core with pedestal as boundary condition
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Update sources, current profile and equilibrium — new 3,
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Pedestal calculation is updated based on the new value of

global pressure 3,,, and loop is iterated until convergence
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Pedestal calculation is updated based on the new value of

global pressure 3,,, and loop is iterated until convergence
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Pedestal calculation is updated based on the new value of

global pressure 3,,, and loop is iterated until convergence

Core-pedestal transport modeling

OMFIT
Core profiles Pedestal structure
TGYRO IPS EPED1
Turbulent Model equilibria
transport + pedestal profiles
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N b
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Pedestal calculation is updated based on the new value of

global pressure 3,,, and loop is iterated until convergence

Core-pedestal transport modeling

OMFIT
Core profiles Pedestal structure
TGYRO IPS EPED1
Turbulent Model equilibria
transport + pedestal profiles
TGLF ) l&— || TOQ w/KBM constraint
N b
Neoclassical Peeling-ballooning
transport MHD stability
NEO ELITE
,
Current evolution Closed boundary
and sources equilibrium
ONETWO EFIT

0. Meneghini - 2016 IAEA FEC Kyoto

AXIS CORE TR PED
" Electron temperature '
4l
=3
£
= 5F
1t
0
lon temperature
a4l
= 3¢
]
=51
1t
0 x10*°
Electron density
== EPED+TGYRO
2 = EPED
. Pedestal density input to EPED
0 . . |
0.25 0.50 0.75 1.00
DIII-D #153523 3745ms
0:0 GENERAL ATOMICS



Converged solution compares very well with

measurements across the whole plasma
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Converged solution is insensitive to

the initial guess of global pressure 3,, gyess

o Workflow converges 1o
the same solution for a

broad range of initial 4}
6n,guess
3L
ﬁ Self consistent
® B guess IS the initial n solution
guess to a non-linear 2t i
root-finding problem et e )
1l
== By exp=1.68
e Faster convergence for 1 2 3 4
X Initial guess Self-consistent iteration
/Bn,guess ~ Bn,solutlon DII-D #153523 3745ms
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Self-consistent core-pedestal optimization of ITER baseline

scenario with n ,cq ANd Z.g ,.qa as actuators

Core-pedestal transport modeling

1 lterative workflow and i oV :
. i Core profiles Pedestal structure ||
coupling scheme fo robusfly ToYRO 1PS EPEDT

find self-consistent solution 1 Turbulent Mode' equilibria |

transport +pedesta| profiles |||

TGLF TOQ w/KBM constraint

2 Self-consistent optimization 3 Neoclassical Pasling, bam:ﬁmng
of fusion power for ITER e g

baseline scenario

Current evolution
sources and equilibrium

TRANSP

3 Accelerated core-pedestal
predictions with
neural-network based ,

Budny,R.V. (2009) Nuclear Fusion 49 115

models Comparisons of predicted plasma
performance in ITER H-mode plasmas

Inifial conditions based on:
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2D scan in n., Z.g identifies a family of self-consistent

solutions which satisfy ITER baseline Q > 10 target

Fusion gain Q

Pedestal height p,, [kPad]
4 . . . 12 4 . . : 140
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High fusion performance:
o for different values of n, and Z.g
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High fusion performance cases share similar values of
pedestal pressure and bootstrap current
Fusion gain Q

v . . 12 a
A
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High fusion performance:

o for different values of n, and Z.g

13

e but similar values of pedestal pressure and bootstrap current
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Lower fusion power conditions due to peeling or ballooning

modes depending on pedestal collisionality

Fusion gain Q Pedestal height p,,, [kPa]

Z, eff,ped

Jboot X 1/Zeffn§
7

5 7 11 13 5 9 11 13
ne,ped [1019 m—3] ne,ped [1019 m—S]
High fusion performance:

o for different values of n, and Z.g
e but similar values of pedestal pressure and bootstrap current
e where pedestal height is peeling-ballooning limited
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First-principles core-pedestal transport simulation are

computationally demanding and still require supervision

These self-consistent coupled
Fcore—pedestal simulations § |
= p | = g-' o FIRST PRINCIPLES
irst Principles ementary Il
Models —»  Reduced Models —> Models w
Standalone Loose CouPIing Tight Coupl‘!ng © REDUCED
Integration Integration
Days/Hours Minutes/Seconds Milliseconds
One of a Kind — Supervised — Automatic
ELEMENTARY
Physics Planning & Control D ——
Validation Engineering 5?2\3)'
1+ hour for each self-consistent iteration (at least 5+ iterations)
e EPED1 ~ 20 mins on HPC with hundreds of cores
e TGLF ~ secs but transport solution requires 1000°s of evaluations

0:0 GENERAL ATOMICS

Elementary models faster, but at the cost of reduced physics fidelity
= need to break traditional modeling speed-vs-fidelity tfradeoff <
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Neural Network paradigm can provide the missing link

towards functional whole device modeling simulations

Self-consistent core-pedestal

coupled simulations with NN E |
S T | o FIRST PRINCIPLES
First Principles Telueed Meakls Neural Network &
Models Models
Loose Coupling Tight Coupling NEORAL
Standal — — EDUCE!
andaione Integration Integration ¢ REDUCED ° NETWORK
Days/Hours Minutes/Seconds Milliseconds
One of a Kind — Supervised — Automatic
ELEMENTARY
S i °
Ph){sms' PIar\nmq & Control —
Validation Engineering 5‘?‘2@

Neural networks can be used to produce a non-linear multidimensional
regression to a database of high fidelity calculations
o NN models are fast and yet retain fidelity of fraining simulations

e Regularization techniques used to obtain smooth NN output

0:0 GENERAL ATOMICS
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Accelerated EPED1 and TGLF models with neural networks
to enable routine coupled core-pedestal transport studies

Core-pedestal transport modeling
OMFIT

1 Iterative workflow and i Core profiles and pedestal structure
coupling scheme to robustly || 3
find self-consistent solution I t | 3

~ 1
it TGLENN 4| Pedestal structure | |,
i | EPED1-NN |
/'l Neoclassical | —| !
‘
‘
)
‘
‘
‘

2 Self-consistent optimization bl transport  |:
. | Chang-Hinton |
of fusion power for ITER e J
baseline scenario 3 | T :
| | Current evolution Closed boundary 3
and sources equilibrium
3 Accelerated core-pedestal RS il |
predictions with L \—/ ,,,,,,,,,, g
neural-network based TGYRO simulat ih
mOdels siMmulaTions wi

coupled core-pedestal NN
models run in few seconds
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EPED1-NN model closely reproduces EPED1 predictions

Trained across input parameter range of multiple devices

Pedestal height p,.q [kPa]
10 EPED input ‘

parameters to predict 2.0 0g, 24\
Pped s Wped Z‘ 1.5} 1 #1102 8 18 |
a - L3 12f
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DIll-D: 3,000 runs
KSTAR: 700 runs

Pedestal width wy.q [A%1]
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\ 230}
ITER: 15,000 runs — 0.6 1 5
& H101 S 20
o4 ’2 1 10}
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L L 1 0 L
x 10" speedup 020608 1 9325 o000 025
EPED1 Relative Error
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TGLF-NN model closely reproduces TGLF predictions

Trained on ion energy transport DIlI-D experiments

23 TGLF input
parameters to predict
gyro-Bohm fluxes

Qe, Qi, e, 11;

Trained on database
of 32,000 TGLF runs
based on DIII-D
experiments aimed at
probing ion energy
transport (power and
torque scans)

x 10° speedup

25
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Validated TGYRO simulations with coupled NN models

against 200 time slices from DIII-D ion transport experiments

0.50 — - - - 0.50 — - - -
Te,rGYRO — Teexp Ti rayro — Tiexp
0.25} — 7 . ) 025¢ T Tiep /]
e,exp i,exp
0.00F=cz------=-= R s S
~0.251| | —o.25| |
~0.50 L ' ' ' ~0.50
0.50 — - - - 0.50 — - - -
n, p) — N,
0.251 < e, TGYRO e,exp >_ 0.25| |
Tle, exp
000 Lo oo oo -] oo00li LTI === - -]
—0.25| 1 o5l <m>
Wexp
_0' 50 L L L L _0. 50 1 Il Il Il
0.2 0.4 0.6 0.8 0.2 0.4 0.6 0.8
P )

e For this dataset on average 3, converges to ~ 90% By exp
e Robust NN models — convergence does not require supervision
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Conclusion: enabling core-pedestal coupled workflow,

and increasing speed by millions with neural networks

@ lterative workflow robustly finds self-consistent solution
without pedestal height/width as free parameters

® SCAN iN 1 peq Os WEll AS Zeg ,eq NS identified a family of
self-consistent solutions for which @ > 10 ITER baseline
target can be achieved

® TGLF-NN and EPED1-NN accelerate core/pedestal
calculations and provide the missing link for functional
WDM simulations and control

Next step: core & pedestal & SOL coupling
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