Compression and heating of solid spherical target under the strong external magnetic field is studied using fast ignition integrated interconnecting simulation system (FI³). The simulation results show that (i) a compression of a solid sphere target is stable, and it is possible to achieve a high areal density core plasma. Using GXII scale laser, it will be \(\rho R = 60-80 \ \text{mg/cm}^2 \). (ii) The magnetic mirror ratio is less than 4 which does not reflect most of the hot electrons for heating core, and (iii) magnetic beam guiding enhances the heating efficiency significantly.