Advances in the high bootstrap fraction regime on DIII-D towards the Q=5 mission of ITER steady state

By
J.P. Qian¹, A.M. Garofalo², X. Z. Gong¹, Q.L. Ren¹, S. Y. Ding¹, W.M. Solomon³, J. Huang¹, B.A. Grierson³, W. F. Guo¹, C.T. Holcomb⁴, J. McClenaghan⁵, G.R. McKee⁶, C. K. Pan¹, J.R. Ferron², A.W. Hyatt², G. M. Staebler², B. N. Wan¹

¹ Institute of Plasma Physics, Chinese Academy of Science, Hefei, China
² General Atomics, San Diego, USA
³ Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
⁴ Lawrence Livermore National Laboratory, Livermore, California, USA
⁵ Oak Ridge Associated Universities, Oak Ridge, TN, USA
⁶ University of Wisconsin-Madison, Madison, Wisconsin, USA

Presented at the 26th IAEA Fusion Energy Conference
Kyoto, Japan
17–22, October, 2016

This work was supported in part by the National Magnetic Confinement Fusion Program of China 2015GB102000 and the U.S. Department of Energy under DE-FC02-04ER54698, DE-AC52-07NA27344, DE-FG02-08ER54999, DE-AC02-09CH11466, DE-FG02-07ER54917 and DE-FG02-06ER54871.
Q=5 of ITER steady state is addressed based on the extended DIII-D high bootstrap fraction scenario

\[f_{\text{bootstrap}} \sim \beta_P \sqrt{\varepsilon} \]

- High bootstrap current fraction addresses key challenge for steady-state operation: minimizes need for external current drive
Previous EAST/DIII-D joint experiment has demonstrated high bootstrap fraction regime with good confinement for

\[I_p \text{ (MA)} \]

\[\beta_N \]

\[\beta_T \% \]

\[H_{\psi y2} \]

\[T_{i,p-0.5} \text{ (keV)} \]

\[T_{e,p-0.5} \text{ (keV)} \]

\[P_{\text{NBI}} \text{ (MW)} \]

\[P_{\text{ECCD}} \text{ (MW)} \]

\[\Omega \left(10^4 \text{ rad/s}\right) \]

\[0 \leq \rho \leq 1 \]

\[T_i \text{ (keV)} \]

\[T_e \text{ (keV)} \]

\[\text{Shot 154406 time: 5200.000±10.} \]

\[\text{Garofalo et al., IAEA FEC 2014} \]

\[\text{Gong et al., IAEA FEC 2014} \]

\[\text{Ren et al., APS 2015} \]

\[\text{Pan et al., TTF 2016} \]

\[\checkmark \text{ Excellent confinement quality associated with formation of ITB at large minor radius} \]
Q=5 of ITER steady state is addressed based on the extended DIII-D high bootstrap fraction scenario

\[f_{\text{bootstrap}} \sim \beta_P \sqrt{\varepsilon} \]

- High bootstrap current fraction addresses key challenge for steady-state operation: minimizes need for external current drive

- **DIII-D high \(\beta_P \) scenario**
 - High bootstrap current (~80%)
 - High confinement with large radius ITB

- **ITER steady state requires:**
 - Good confinement at low torque
Q=5 of ITER steady state is addressed based on the extended DIII-D high bootstrap fraction scenario

\[f_{\text{bootstrap}} \sim \beta_p \sqrt{\epsilon} \]

- High bootstrap current fraction addresses key challenge for steady-state operation: minimizes need for external current drive

- **DIII-D high \(\beta_p \) scenario**
 - High bootstrap current (~80%)
 - High confinement with large radius ITB

- **ITER steady state requires:**
 - Good confinement at low torque

![Graph showing Scaled Fusion Power Versus Self-Driven Current Fraction with curves for different qₗ₉ values and markers for ITER, ITER SS, ARIES ACT-1, DIII-D 2014, and DIII-D 2016.]
Recent experiment shows large radius ITB, good confinement can be maintained at extended operational regime

- Extension of DIII-D high β_p scenario to low rotation near ITER NBI equivalent torque
- Shafranov shift has key stabilizing effect on turbulence transport
- Investigation on lower q_{95} confirmed shafranov shift effect
- Extrapolation of DIII-D high β_p scenario to ITER steady state
Recent experiment confirmed high confinement can be achieved near ITER NBI equivalent torque

- **High β_p scenario**
 - $q_{95} \sim 12$
 - High $f_{bs} \sim 80\%$
 - Nearly fully non-inductive

- **High confinement**
 - $H_{98y2} \sim 1.8$

- **Low toroidal rotation**
 - Reduced torque $T_{\text{inj}} \sim 1.5\,\text{Nm}$
 - Close to DIII-D ITER equivalent NBI torque

- **No strong impurity accumulation**
Large radius ITB is maintained at low toroidal rotation

- Similar T_e profiles with large radius ITB in high and low toroidal rotation
- High rotation shear does not align with T_e ITB
- Toroidal rotation is not the dominant effect on the formation of the ITB
Large radius ITB is maintained at low toroidal rotation
No ion turbulence near ITB at high and low toroidal rotation

- Ion scale turbulence measurements from Beam Emission Spectroscopy
Ion energy transport is dominantly neoclassical

- Evolving just the ion temperature predicted from TGLF + NEO
- Neoclassical transport is the dominant ion energy flux
- Small change in predicted Ti with/without EXB

Energy flux is not sensitive to EXB shear

![Graph showing energy flux comparison with and without EXB shear at BC rho=0.8](image-url)
Modeling shows shafranov shift stabilize ion turbulence

- EFIT creates a series of equilibria with scaled pressure profiles
- Calculations focus on ITB region, rho~0.63 with TGLF and NEO
- Turbulent ion energy fluxes by TGLF decrease with the increasing β_P

\[
\text{Shafranov shift} \propto \beta_P + \frac{l_i}{2}
\]
Recent β_P Ramp-down experiment confirmed the TGLF prediction of shafranov shift stabilization

- Ramp down of β_P obtained with feedback control of the NBI heating power
Recent β_p Ramp-down experiment confirmed the TGLF prediction of shafranov shift stabilization

- Ramp down of β_p obtained with feedback control of the NBI heating power
- ITB becomes weaker and disappears when lowering β_p
Recent β_p Ramp-down experiment confirmed the TGLF prediction of shafranov shift stabilization

- Ramp down of β_p obtained with feedback control of the NBI heating power
- ITB becomes weaker and disappears when lowering β_p
Recent β_p Ramp-down experiment confirmed the TGLF prediction of Shafranov shift stabilization

- Ramp down of β_p obtained with feedback control of the NBI heating power
- ITB becomes weaker and disappears when lowering β_p
Recent β_p Ramp-down experiment confirmed the TGLF prediction of shafranov shift stabilization

- Ramp down of β_p obtained with feedback control of the NBI heating power
- ITB becomes weaker and disappears when lowering β_p
Recent β_p Ramp-down experiment confirmed the TGLF prediction of shafranov shift stabilization

- Ramp down of β_p obtained with feedback control of the NBI heating power
- ITB becomes weaker and disappears when lowering β_p
- Ion-scale fluctuations increase as β_p reduced
To achieve $Q=5$ Mission of ITER-SS requires lower q_{95}

- **Using GA 0-D model**
 - $H_{98y2}=1.6, f_{BS}=80\%$
 - $P_{aux}=73$ MW, $B_T=5.3$ T

- **Reducing q_{95} increases the fusion power**

- **Question:** lower $q_{95}\rightarrow$ lower betaP\rightarrowlower shafranov shift
 - Can $H_{98y2}>>1.0$ be maintained?
Good confinement plasmas are also achieved when lowering q_{95}

- **Second Ip ramp-up**
 - I_p 0.6MA \rightarrow 1MA
 - q_{95} 11 \rightarrow 6.5
- **Good confinement**
 - H_{98y2} > 1.5 at q_{95} > 7.0
 - Confinement decreases due to weaker ITB
Large radius ITBs can be maintained at reduced q_{95}

- A broad current profile was achieved at reduced q_{95}
- T_e profiles with large radius ITB are produced at high and low q_{95}
- Higher plasma current has a higher core T_e
Large radius ITBs can be maintained with sufficient shafranov shift stabilization effect

- Higher β or higher q_{95} \rightarrow stronger shafranov shift \rightarrow better for ITB formation
DIII-D high β_p scenario profiles are scaled to ITER according to 0D modeling results

0D modeling (assuming $H_{98y2}=1.6$):

$\rightarrow I_P, T_e(0), T_i(0), n_e(0)$
TGLF indicates Shafranov shift is not sufficient for ITB in ITER

- Evolved T_i is much lower than the scaled temperature
- ITB disappears
TGLF indicates Shafranov shift is not sufficient for ITB in ITER. Larger negative magnetic shear recovers ITB, enables Q=5.

- Increase $q(0)$ to 7 at constant pressure
- Improved confinement with turbulence suppressed
- Q=5 achieved with high T_e and T_i
Summary: DIII-D high β_p scenario shows promising path for long pulse fully non-inductive scenario on ITER

- Large radius ITB and excellent confinement maintained at reduced rotation or q_{95}

- Transport analyses suggest that EXB shear has little contribution to turbulence suppression, while Shafranov shift has the stabilizing effect on the turbulence.

- 0-D and 1.5-D modeling analyses indicate high bootstrap scenario can be a candidate for $Q=5$ of ITER steady state.