SOLPS modeling of DIII-D discharges indicates ∇B drift driven flows modify pedestal structure

- ∇B drift drives radial currents in the pedestal
 - modification to particle flux in high-gradient region of pedestal
 - favorable drift reduces particle flux

- **Favorable ∇B drift results in higher P_{tot} inside pedestal**
 - lower, wider density pedestal
 - higher T_e
 - hypothesis: reduced density gradient affects KBM stability allowing wider pedestal

Reduced $\Gamma = \text{lower ped. dens.}$