3D effects on transport and plasma control in the TJ-II stellarator

Francisco Castejón, the TJ-II Team and Collaborators
Laboratorio Nacional de Fusión, CIEMAT. Spain
francisco.castejon@ciemat.es
Contributors & the TJ-II Stellarator

F. Castejón
and contributors from:
Laboratorio Nacional de Fusión, CIEMAT,
28040, Madrid, Spain
Institute of Plasma Physics, NSC KIPT,
Ukraine; Institute of Nuclear Fusion,
RNC Kurchatov Institute, Moscow,
Russia; A.F. Ioffe Physical Technical
Institute, St Petersburg, Russia; General
Physics Institute, Moscow, Russia; IPFN,
Lisbon, Portugal; Kyoto University,
Japan; Max-Planck-Institut für
Plasmaphysik, Greifswald, Germany;
NIFS, Toki, Japan; Universidad Carlos III,
Madrid, Spain; University of California-
San Diego, USA; BIFI, Universidad de
Zaragoza, Spain; SWIF, Chengdu, China

TJ-II Heliac
B(0)< 1.2 T; R=1.5 m, a<0.22 m
0.9 < ν/2π<2.2
ECRH (0.3 + 0.3 MW);
NBI (0.6 + 0.6 MW) co- and counter injection
MEASUREMENTS: rake Langmuir Probe, dual
HIBP, Mirnov coils, fast bolometers and
Doppler reflectometer
Outline

- Motivation
- Impurity transport
- Plasma fuelling results
- Plasma stability studies
- Flows and electromagnetic effects
- Controlling fast particle confinement: Role of ECRH and magnetic configuration
- Innovative power exhaust scenarios using liquid metals (not 3D-specific)
- Conclusions
Motivation

- **3D Geometry** relevant for Stellarators and Tokamaks (TBM, RMP, Islands,…). => Physics and simulation methods

- **NC Transport Enhanced and onset of ambipolar Er.** => Impact on Fuelling and Transport:
 - Fuelling -> Pellets
 - Impurity Transport.

- **Dispersion Relation of waves and instabilities** => Changes in AEs, GAMs,…
Motivation

Impurity transport

Plasma fuelling results

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confinement: Role of ECRH and magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions
Avoiding Impurity Accumulation

Impurity accumulation is an issue in stellarators (NC effect in ion root)

\[I = n_I L_{11} \left(\frac{n_I'}{n_I} \frac{Z_I eE_r}{T_I} \right) + \frac{T_I'}{T_I} \]

Nevertheless, experiments w/o accumulation:
- Mode HDH in W7-AS and
- Impurity Hole in LHD. [K McCormick et al. PRL 2002, M Yoshinuma et al. NF 2009]

Look for regimes without impurity accumulation:
- Revisit impurity hole
- 3D NC calculations predict that asymmetries in potential modify the impurity flux. [J. M. García-Regaña et al., PPCF 2013]
Moderation of impurity accumulation in impurity hole plasmas

Electric field is negative but small in Impurity Hole conditions, despite the large grad(Ti).

\[I = n_i L_{i1} \frac{n'_i}{n_i} \frac{Z_i e E_r}{T_i} + \frac{T'_i}{T_i} \]

Because of this, the outward and inward pinches are almost balanced. Resulting in a small inward impurity flux.

J. L. Velasco et al., NF 2016, In press

Additional terms could play a relevant role: turbulence, asymmetries, …

Empirical actuators to try to make Er more positive (less negative): ECRH.
Potential Asymmetries influence Impurity Transport

- Impurities are more sensitive to Er than bulk ions (charge state).

- An asymmetric first order potential (usually neglected in NC calculations) \(\Phi_1 \) is calculated using the EUTERPE code.

 - \(\Phi_1 \) has effects on impurity transport: reduce impurity accumulation in LHD.

- Calculated asymmetries pronounced in TJ-II: CAN BE DETECTED

\[
l = n_1 \mathcal{L}_{11} \left(\frac{n'_1}{n_1} \right) Z_{1e} E_r + \left(\frac{T'_1}{T_1} \right)
\]

J. M. García-Regaña et al., Submitted to PPCF 2016
Asymmetries of potential do exist in TJ-II

Poloidal/ toroidal potential variation in the order of 10 – 40 V. M. A. Pedrosa et al., NF 2015

Poloidal / toroidal asymmetries decrease when temperature decreases.
Empirical actuators: ECRH makes Er less negative

- ECRH: Er less negative.
- The sign of Er depends on density and power.
- ECRH+NBI plasmas: higher turbulence level than in NBI.
- Dual HIBP: LRC found (at \(\rho = 0.6 \)) in potential but not in Density or Bpol fluctuations.

C. Hidalgo et al. EXC / P7-44
Outline

- Motivation
- Impurity transport
- Plasma fuelling experiments and neutral dynamics
- Plasma stability studies
- Flows and electromagnetic effects.
- Controlling fast particle confinement: Role of ECRH and magnetic configuration
- Innovative power exhaust scenarios using liquid metals
- Conclusions
Hollow density profiles appear in 3D devices (also in tokamaks) when Te high → Core Fuelling Difficulties.

- Injecting a pellet in TJ-II NBI plasmas.
- Follow electron density profile after injection using the Thomson Scattering system.
- Set of reproducible discharges.
- Hollow density profiles appear in 3D devices (also in tokamaks) when T_e high --> Core Fuelling Difficulties.

- Injecting a pellet in TJ-II NBI plasmas.

- Follow electron density profile after injection using the Thomson Scattering system.

- Set of reproducible discharges.

7.3 x 10^{18} H° in Pellet
NBI heating
100_44_64
Target $\bar{N}_e = 9.5 \times 10^{18}$ m$^{-3}$
TS before injection
TS @ +2.9 ms
- Core Plasma Fuelling in NBI plasmas, despite outside ablation.

Electron Temperature (keV) vs. Normalised Plasma Radius, ρ

- Nearest approach of pellet to centre

7.3 x 10^{18} \text{He}^{+} in Pellet NBI heating 100_44_64

Target \tilde{N_e} = 9.5 \times 10^{18} \text{m}^{-3}

TS before injection
TS @ +2.9 ms
TS @ +18.9 ms

Electron Density (x10^{19} \text{m}^{-3}, Hα (arb. units))

- Pellet Injection as a tool for core fuelling (NC transport afterwards understood in TJ-II)

J. L. Velasco \textit{et al.}, PPCF 2016.
A. Dinklage. EX/P5-1
K.J. McCarhy. EX/P7-47
Pellet Injection & Relaxation of Potential Oscillations

- Experiments beyond core fuelling: Direct observation of the Relaxation of Zonal Potential Oscillations.

- Damped oscillations of plasma potential well simulated by GK calculations of ZF relaxation in 3D systems.

- Oscillations in the freq. of ZFs.

A. Alonso et al. Submitted, 2016
Outline

- Motivation
- Impurity transport
- Plasma fuelling experiments and neutral dynamics
- **Plasma stability studies**
- Flows and electromagnetic effects.
- Controlling fast particle confinement: Role of ECRH and magnetic configuration
- Innovative power exhaust scenarios using liquid metals
- Conclusions
Stable plasmas in Mercier-unstable configurations

- Mercier Criterion in TJ-II: stable plasmas need positive magnetic well.

- Mercier criterion applied in 3D devices instability.

- Stable plasmas in Mercier-unstable configurations in TJ-II.

A. M. de Aguilera et al. NF 2015

LHD: S. Sakakibara et al. PPCF 2008

- No change in the plasma size (no effect of the rational).

- A stabilization mechanism must exist (self-organization process).
Candidate to GAMs destabilised in TJ-II: driven by fast electrons or fast ions

- GAMs can couple with turbulence.
- Simulations: GAMs strongly damped at different temps. in TJ-II.
- Need an external drive to exist.

Acoustic Mode (Possible GAM) destabilised by fast electrons.
Close to rational surfaces. Non-linear interaction with islands.
Toroidal structure \((n=1)\), different from tokamaks.

Also observed: GAM destabilised by fast ions
Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confinement: Role of ECRH and magnetic configuration

Innovative power exhaust scenarios using liquid metals

Conclusions
3/2 rational influences plasma flow and \tilde{n}_e

- Doppler reflectometer measurements: the flow changes twice direction when crosses the rational.
- Increase in the perpendicular flow fluctuations ($f<50$ kHz).
- Synchronous: reduction in the density fluctuation level.
- Relation of Transport Barriers and rationals.
- L-H Transition fostered by rationals.

T. Estrada et al, EXC/P7-45

Outline

- Motivation
- Impurity transport
- Plasma fuelling experiments and neutral dynamics
- Innovative power exhaust scenarios using liquid metals
- Plasma stability studies
- Flows and electromagnetic effects.
- Controlling fast particle confinement: Role of ECRH and magnetic configuration
- Innovative power exhaust scenarios using liquid metals
- Conclusions
CNPA flux proportional to fast ion density.

- AEs degrade fast ion confinement.

- AE Mitigation by ECRH
 - Depending on ECRH power
 - Plasma profiles or
 - Modifying the damping by electron trapping

J. Fontdecaba et al, In preparation

K. Nagaoka, et al., NF 2013

Mirnov Coil Spectra

CNPA spectral flux
Controlling AEs by Modifying magnetic configuration

Chirping w/o ECRH in given rotational transform windows

- The mode frequency decreases with Magnetic Well (Understood by STELLGAP calculations)
- AE appears at inner radii.

Configuration dynamic scan (increasing rotational transform and reverse:
We get chirping modes w/o ECRH at given values of the rotational transform.

Magnetic Islands Change the Spectrum
Gap: MIAEs

A. Melnikov, et al., Nucl. Fusion 2016

A. Melnikov, et al., Nucl. Fusion 2016

F. Castejón et al., PPCF, 2016

S. Baojun et al. NF, 2015
Outline

- Motivation
- Impurity transport
- Plasma fuelling experiments and neutral dynamics
- Plasma stability studies
- Flows and electromagnetic effects.
- Controlling fast particle confinement: Role of ECRH and magnetic configuration
- Innovative power exhaust scenarios using liquid metals
- Conclusions
Innovative PFC and power exhaust: Liquid metal alloys (LiSn)

- Strong PWI in TJ-II.
- Experiments on TJ-II using liquid metals with a CPS.
- LiSn alloys tested: liquid limiter.
- Results:
 - Insertion of a LiSn sample w/o significant perturbation of the plasma parameters.
 - Clean plasmas: relevant in 3D devices to avoid impurity accumulation.
 - Small H retention (~ 0.01% H/(Sn+Li) at T< 450º C),
- These results provide good perspectives for the use of liquid LiSn alloys as a PFC in a Reactor (also stellarator reactor).

F. L. Tabarés et al. PSI, 2016
Motivation

Impurity transport

Plasma fuelling experiments and neutral dynamics

Innovative power exhaust scenarios using liquid metals

Plasma stability studies

Flows and electromagnetic effects.

Controlling fast particle confinement: Role of ECRH and magnetic configuration.

Conclusions.
Conclusions

• 3D Physics Relevant for tokamaks and Stellarators: NC transport and Er (Bulk Plasma & Impurities); Waves and Instabilities.
• Avoiding Impurity Accumulation: Understanding Impurity Hole.
• Potential Asymmetries have influence on impurity transport: Potential Asymmetries detected in TJ-II.
• Fuelling: Pellet injection as a tool for core fuelling, despite outside ablation (NC-effect in TJ-II).
• Stability:
 ➢ Stable plasmas found in Mercier unstable configurations.
 ➢ Candidates to GAMs found in TJ-II despite the expected large damping.
 Drivers: Fast ions and fast electrons.
• Effect of 3/2 rational on plasma flow and reduction of \bar{n}_e.
• Fast Particle Physics: Controlling AEs using ECRH and magnetic configuration (rotational transform, magnetic well and magnetic islands).
• Innovative PFC power exhaust: LiSn alloys relevant for a reactor. (Not 3D-specific)
CIEMAT Contributions to IAEA-FEC 2016

- F. Castejón et al. OV/5-1. “3D effects on transport and plasma control in the TJ-II stellarator”
- T. Estrada et al. EXC/P7-45. “Plasma Flow, Turbulence and Magnetic Islands in TJ-II”
- C. Hidalgo et al. EXC / P7-44. “On the influence of ECRH on neoclassical and anomalous mechanisms using a dual Heavy Ion Beam Probe diagnostic in the TJ-II stellarator”
- D. López-Bruna et al. EX/P7-48. “Confinement modes and magnetic-island driven modes in the TJ-II stellarator”
- K.J. McCarhy et al. EX/P7-47. “Plasma Core Fuelling by Cryogenic Pellet Injection in the TJ-II Stellarator”
- E. de la Luna et al. EX/P6-11. “Recent results of High-Triangularity H-mode studies in JET-ILW”
- I. Palermo et al. FNS/P5-1. “Optimization process for the design of the DCLL blanket for the European DEMOnstration fusion reactor according to its nuclear performances”
• Fast Ion confinement is not degraded in the presence of chirping.

• A key point is to understand chirping.

J. Fontdecaba et al, In preparation
SOL affected by plasma edge conditions

- SOL properties and, hence, fuelling are not local.
- Experiments show that they are affected by edge conditions.

- Potential in the SOL depends on plasma potential.
- SOL density depends on plasma characteristics.

Wu Ting et al. Submitted to Nuclear Fusion.
Advanced Diagnostics: Dual HIBP

- Duplicated diagnostics: new physics.
- Dual HIBP: Collaboration with KHFTI & Kurchatov.
- Duplicated probes.
- Pellet Injector and Liquid Metal Limiter.
- Future: duplicate Doppler reflectometry in W7-X.
- Hydrogen pellets (deuterium also possible).
- Four lines-of-flight separated by 54 mm.
- 4 pellet sizes available \([3\times10^{18} \text{H}^0 (1), 8\times10^{18} \text{H}^0 (2), 1.5\times10^{19} \text{H}^0 (3) & 3 \times10^{19} \text{H}^0 (4)]\) with +/- 30% variation in mass.
- Lightgate and Microwave Cavity provide timing (-> velocity) and mass signals.
- Injection velocities (800 to 1200 m/s) - propellant gas system.
Effect of turbulence on neutrals: neutrals blobs

\[I_\lambda = c \, n_e \, n_0 \, k_\lambda(n_e, T_e) \]

\[\Delta I = \Delta n_e \, n_0 \, k_\lambda + \Delta k_\lambda \, n_e \, n_0 + \Delta n_0 \, n_e \, k_\lambda \]

\[\approx 0 \text{ for } 40 < T_e < 120 \text{ eV} \]

Two-dimensional imaging of edge \(n_e \) with the He-ratio technique, \(t = 15 \mu s \)

Non-negligible