Studies of the Pedestal Structure in JET with the ITER-like Wall

Costanza Maggi
CCFE, Culham Science Centre, Abingdon, OX14 3DB UK

26th IAEA Fusion Energy Conference, Kyoto, Japan, 2016
Acknowledgements

L Frassinetti¹, L Horvath², A Lunniss², S Saarelma³, H Wilson², FJ Casson³, E Delabie⁴, D King³, M Leyland², I Lupelli³, S Pamela³, A Sips⁵, H Urano⁶, H Weisen⁷ and JET Contributors*

EUROfusion Consortium, JET

Culham Science Centre, Abingdon, OX14 3DB, UK

¹Association VR, Fusion Plasma Physics, KTH, SE-10044 Stockholm, Sweden
²York Plasma Institute, Department of Physics, University of York, York YO10 5DD, UK
³CCFE, Culham Science Centre, Abingdon OX14 3DB, UK
⁴Oak Ridge National Laboratory, Oak Ridge, Tennessee, US
⁵European Commission, Brussels, Belgium
⁶National Institutes for QST, Naka, Ibaraki 311-0193, Japan
⁷SPC, Ecole Polytechnique Federale de Lausanne, Switzerland

*See the author list of “Overview of the JET results in support to ITER” by X Litaudon et al., to be published in Nuclear Fusion Special Issue: Overview and summary reports from the 26th Fusion Energy Conference (Kyoto, Japan, 17-22 October 2016)
Outline

- Pedestal width scaling
- Pedestal evolution during the ELM cycle
- First results on isotope effects
Width & gradient independent of ρ^*

- No sizeable dependence of $\Delta_{pe}(\psi)$ and α_{exp} on ρ^*
- Consistent with JET-C/DIII-D and JT-60U

[Frassineti, PPCF 2016]

[Beurskens, PoP 2011] [Urano, NF 2008]
Pedestal width broadens with beta poloidal

- $\Delta_{pe}(\psi)$ broadens consistently with $\sqrt{\beta_{pol,PED}}$ dependence at low D_2 gas injection rates

Power scans at low and high δ
1.4MA/1.7T
Low D_2 gas rate $\sim 3 \times 10^{21}$ e/s

$0.076 \times (\beta_{pol,PED})^{0.5}$

[Maggi, NF 2015]
Pedestal width broadens with gas rate

- $\Delta p_e (\psi)$ broadens with increasing D_2 gas rate at constant $\beta_{pol,PED}$

Power and gas scans 1.4MA/1.7T

$\Gamma = 3 \times 10^{21}$ e/s
$\Gamma = 8 \times 10^{21}$ e/s
$\Gamma = 18 \times 10^{21}$ e/s

$\Gamma = 3 \times 10^{21}$ e/s

[Leeland, NF 2015]
[Maggi, NF 2015]
$\Delta_{pe}(\psi)$ broadens with ν^* at constant $\beta_{pol,PED}$

Dimensionless ν^* scan at low δ

$\Delta_{pe}(\psi) \sim (\beta_{pol,PED})^{0.5} (\nu^*_{PED})^{0.26}$

[Frassinetti, NF 2016]
Normalized Δ_{pe} broadens at constant ν^*

- $\Delta_{pe} (\psi)/\sqrt{\beta_{pol,PED}}$ broadens with increasing D_2 gas rate at constant $\nu^*_{e,PED}$ → possible role of atomic physics

Power and gas scans 1.4MA/1.7T

$\Gamma = 3 \times 10^{21}$ e/s
$\Gamma = 8 \times 10^{21}$ e/s
$\Gamma = 18 \times 10^{21}$ e/s
$\Gamma = 3 \times 10^{21}$ e/s
Outline

- Pedestal width scaling

- Pedestal evolution during the ELM cycle

- First results on isotope effects
EPED model assumption

- **P-B constraint**
- **KBM constraint**

[Snyder, NF 2011]

- Pedestal pressure gradient grows unconstrained \((a) \)
- KBM boundary is reached (proxy: \(\Delta_p \sim \sqrt{\beta_{pol,_PED}} \) \((b) \))
- \(p_{PED} \) can only increase further via widening of \(\Delta_p \) at fixed \(\nabla p \) \((b) \)
- P-B boundary is reached \(\Rightarrow \) type I ELM is triggered \((c) \)
Profile analysis during the ELM cycle

- $T_e,_{PED}$ and $n_e,_{PED}$ typically **not** at same radial location

- $p_e,_{PED}$ and Δp_e from $mtanh$ fit to experimental HRTS pressure data
Low gas injection: P-B constraint satisfied

The pre-ELM edge stability (Helena/ELITE) is consistent with the ELMs being triggered by P-B modes, both at low and high β_N.

Power scans at low and high δ
1.4MA/1.7T
Low D_2 gas rate $\sim 3 \times 10^{21}$ e/s

[Challis, NF 2015]
[Maggi, NF 2015]
[Saarelma, PoP 2015]
\(p_{e,\text{PED}} \) evolution at low gas injection

- **Low** \(\beta_N \): \(p_{e,\text{PED}} \) increases due to steepening of \(\nabla p_e \) at \(\sim \) constant width
 \(\rightarrow \) not consistent with KBM constraint \(\rightarrow \) not consistent with EPED

- **High** \(\beta_N \): \(\nabla p_e \) increases, then saturates & \(\Delta p_e \) narrows then widens
 \(\rightarrow \) consistent with KBM constraint \(\rightarrow \) consistent with EPED
Power scans at high D$_2$ gas injection

- P-B constraint satisfied at low β_N
- P-B constraint not satisfied at higher β_N: missing physics for the ELM trigger?

[Maggi, NF 2015]
$p_{e,PED}$ evolution at high gas injection

- **Low β_N:** width narrows & gradient steepens, then Δp broadens & ∇p reduces \rightarrow qualitatively consistent with KBM constraint + P-B constraint satisfied \rightarrow consistent with EPED

- **High β_N:** $\Delta p_{e} \sim$ constant and ∇p_{e} first increases, then \sim saturates \rightarrow qualitatively consistent with KBM constraint + P-B constraint not satisfied \rightarrow not consistent with EPED
Temperature gradient saturates at high gas rate

- ∇T_e initially increases, then clamps half way of ELM cycle
- \rightarrow suggestive of instabilities limiting growth of $T_{e,ped}$: MTMs?

See e.g exploratory GK study by [Hatch, NF 2016]
Increasing neutral gas (ν*) reduces j_{BS}

- Avoiding saturation of ∇T_e during the ELM cycle is crucial to maximizing pedestal performance.
• Pedestal width scaling

• Pedestal evolution during the ELM cycle

• First results on isotope effects
Isotope effect of type I / type III ELM threshold

- Power threshold for type I ELMs ~ doubles from D to H
Isotope effect of energy confinement

- Lower energy confinement in H than in D

Preliminary, assuming $T_i = T_e$

Power scans at same gas injection rate

$W_{th} [MJ]$ vs $P_{loss} [MW]$

1.4MA/1.7T, low δ

Deuterium

Hydrogen

L-modes

Low Gas Injection: $\Gamma \sim 3-4 \times 10^{21}$ e/s
Edge $T_e - n_e$ diagram

- Weak fuelling efficiency in D type I ELMy H-modes
- $p_{e,\text{PED}}$ decreases in D as gas rate \uparrow and power \downarrow
Hydrogen type III ELMy pedestals

- Lower density in H than in D

\[\Gamma = 3-4 \times 10^{21} \text{ e/s} \]
\[\Gamma = 8 \times 10^{21} \text{ e/s} \]
\[\Gamma = 16 \times 10^{21} \text{ e/s} \]
• Lower density and stronger fuelling efficiency in H than in D
• Hydrogen type I ELMMy pedestals evolve at similar $p_{e,\text{PED}}$
Conclusions

- Pedestal width is independent of ρ^*, widens with $\sqrt{\beta_{\text{pol, PED}}}$ at low gas injection and with $v^*/\text{gas rate}$ at constant $\beta_{\text{pol, PED}}$
- Inter-ELM pedestal evolution depends on discharge conditions & not always consistent with EPED paradigm
- Avoiding saturation of ∇T_e as pedestal re-builds between ELMs is crucial for maximizing pedestal performance
- Edge GK analyses and experimental identification of nature of pedestal turbulence in JET-ILW are needed
- Strong isotope effect in energy and particle confinement