Overview of ASDEX Upgrade results

- new 3-strap ICRF antennas demonstrate ~ factor 2 reduced W release as predicted
- important low density, low collisionality scenarios realized in boronized tungsten device
 (these conditions in AUG are unfavourable for W sputtering and W divertor retention)
 - non-inductive current drive obtained in AUG up to $I_p = 0.8$ MA (see J. Stober, Post Deadline Contr.)
 - full ELM suppression with RMPs at low density and high triangularity (DIII-D recipe)
 - RMPs are also essential for scenario achievement, since
 low H-mode density is only accessssible using density pumpout

Difficulties faced in all-tungsten AUG with low pedestal collisionality scenarios (high core W conc.) are expected to be relaxed in larger devices with higher pedestal temperature:

f_{nw}: ratio of tungsten density at pedestal top and separatrix
depletion of tungsten pedestal density in large devices due to increasing neoclassical temperature screening

(R. Dux, PSI 2016)