Activities for fusion energy functional and plasma facing material research at the University of Latvia

Liga AVOTINA1, Mihails HALITOVS1, Andris LESCINSKIS1, Arturs ZARINS1, Elina PAJUSTE1, Aigars VITINS1,2, Ieva IGAUNE1,2, Ricards KOVALDINS1, Elina PIRAGA1, Oskars VALTENBERGS1,2, Roberts ZARINS1,2, Gunta KIZANE1 and JET contributors4*

1Institute of Chemical Physics, University of Latvia, 2Faculty of Chemistry, University of Latvia, 3Institute of Solid State Physics, University of Latvia, 4EUROfusion Consortium, JET, Culham Science Centre, Abingdon, OX14 3DB, UK

*See Appendix to the F. Romanelli et al., Proc.25th IAEA Fusion Energy Conf.2014, St. Petersburg, Russia.

Authors e-mail: liga.avotina@lu.lv

Investigations on tritium generating materials:

Main conclusions:
Analysis of the functional materials of the JET and for ITER gives contribution to the improvement of the materials and understanding of plasma-wall interactions as well as tritium release processes for next step fusion devices.

Analysis of plasma facing materials:

Fig. 1. Tritium release and structure evolution of neutron irradiated beryllium pebble (PBA experiment) during thermal treatment (heating rate 5K/min)

Fig. 2. Characterization of accumulated radiation defects in Li2SiO4 with excess of SiO2 (A) before and after irradiation with accelerated electrons, (B) the total concentration of the accumulated paramagnetic RD depending on absorbed dose, (C) thermal stability of RD, and (D) the TSL glow curve of recombination processes

Fig. 3. Surface activity of top slice of Cylinders 1-11, Lines 1 and 2;

JET 2001-2004, Tile 14 BW G4B

Fig. 4. Comparison of tritium mass activity W-coated and non-coated tiles