Multi-Machine Modelling of ELMs and Pedestal Confinement: From Validation to Prediction

Stanislas Pamela

IAEA FEC
Kyoto - Japan
17-21 October 2016
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
Edge-Localised Modes

- Pedestal pressure limited by MHD instabilities (ELMs)
- Good: ELMs flush impurities out of plasma
- Bad: High heat-fluxes on divertor
- Bad: They degrade confinement

Edge-Localised Modes

- Pedestal pressure limited by MHD instabilities (ELMs)
- **Good:** ELMs flush impurities out of plasma
- **Bad:** High heat-fluxes on divertor
- **Bad:** They degrade confinement

→ Need ELMs to be as small as possible (20MW.m⁻² limit on ITER)

[Diagram showing ELM behavior with magnetic field strength and plasma current, with reference to A. Loarte, NF 54 (2014)]
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
X-point geometry:
- Flux-aligned poloidal grid (finite Bezier elements)
- Fourier modes in toroidal direction

Reduced MHD model: (using $\eta \sim 10 \times \eta_{\text{spitzer}}$
\[
\frac{d\vec{v}_E}{dt} = -\rho\vec{v}_* \cdot \nabla\vec{v}_E - \nabla_\perp p + \vec{J} \times \vec{B} + \mu \nabla^2 (\vec{v}_E + \vec{v}_*),
\]
\[
\rho \frac{\partial\vec{v}_\parallel}{\partial t} = -\rho\vec{v}_\parallel \cdot \nabla\vec{v}_\parallel - \nabla_\parallel p + \mu \nabla^2 (\vec{v}_\parallel - \vec{v}_{\text{NBI}}),
\]
\[
\frac{\partial \psi}{\partial t} = \eta (j - j_A) + R [\psi, \Phi] - \frac{\delta^* R}{\rho} [\psi, p_e] - \frac{\partial \Phi}{\partial \phi} + \frac{\delta^*}{\rho} \frac{\partial p_e}{\partial \phi},
\]
\[
\frac{\partial \rho}{\partial t} = -\nabla \cdot (\rho \vec{v}_{\text{tot}}) + \nabla \cdot (D_\perp \nabla_\perp \rho) + S_\rho,
\]
\[
\rho \frac{\partial p}{\partial t} = -\vec{v}_E \cdot \nabla p - \gamma p \nabla \cdot \vec{v}_E + \nabla \cdot (\kappa_\perp \nabla_\perp T + \kappa_\parallel \nabla_\parallel T) + S_T,
\]

MPI-openMP parallelisation:
- ARCHER (UK)
- MARENOSTRUM (Spain)
- HELIOS-IFERC (Japan)
- MARCONI (Italy)
- Many devices simulated
- Different devices have different diagnostic capabilities → code validation must be adapted w.r.t. device

eg. - filament rotation
- X-point lobes
- divertor heat-flux
- momentum loss
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
- In experiments, heat flux increases at low v^{*}_{ped} (IR camera)
JET Divertor Heat Fluxes

- In experiments, heat flux increases at low v_{ped}^* (IR camera)

- Provided pre-ELM p_{ped} is unstable
 → JOREK can describe energy transport
- In experiments, heat flux increases at low v^*_{ped} (IR camera)

- Provided pre-ELM p_{ped} is unstable
 → JOREK can describe energy transport
- In experiments, heat flux increases at low v^*_{ped} (IR camera)

- Provided pre-ELM p_{ped} is unstable
 \[\rightarrow\] JOREK can describe energy transport

- Good agreement for low-gas JET-ILW, bad agreement for high-gas pulses
 \[\rightarrow\] Piece of physics missing from model?
- In experiments, heat flux increases at low ν_{ped}^* (IR camera)

- Provided pre-ELM p_{ped} is unstable
 \rightarrow JOREK can describe energy transport

- Good agreement for low-gas JET-ILW, bad agreement for high-gas pulses
 \rightarrow Piece of physics missing from model?

[C. Maggi, NucFus (2015)]
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
Eich Scaling: Parallel Energy ε_{II}

- Parallel energy = time integral of heat-flux

$$\varepsilon_{II} = \int_{t_{ELM}} q_{II}(s, t) dt$$

[B.Sieglin, EPS (2013)]
Eich Scaling: Parallel Energy ε_{II}

- Parallel energy = time integral of heat-flux

$$\varepsilon_{II} = \int_{t_{ELM}} q_{II}(s, t) dt$$

- Eich Scan shows dependency on p_{ped}, $\sqrt{\Delta W_{ELM}}$ and R_{geo}

$$\varepsilon_{II} = 0.28 \pm 0.14 \frac{MJ}{m^2} \times n_{e,ped,\text{top}}^{0.75 \pm 0.15} \times T_{e,ped,\text{top}}^{0.98 \pm 0.1} \times \Delta E_{ELM}^{0.52 \pm 0.16} \times R_{geo}^{1 \pm 0.4}$$

[Text Credit: T.Eich, PSI (2016)]
Eich Scaling: Parallel Energy ε_{\parallel}

- Parallel energy = time integral of heat-flux

$$\varepsilon_{\parallel} = \int_{t_{ELM}} q_{\parallel}(s,t)dt$$

- Eich Scan shows dependency on p_{ped}, $\sqrt{\Delta W_{ELM}}$ and R_{geo}

$$\varepsilon_{\parallel} = 0.28 \pm 0.14 \frac{MJ}{m^2} \times n^{0.75 \pm 0.15}_{e,ped,top} \times T^{0.98 \pm 0.1}_{e,ped,top} \times \Delta E^{0.52 \pm 0.16}_{ELM} \times R^{1 \pm 0.4}_{geo}$$
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
MHD Stability

- JET-ILW pre-ELM P_e^{ped}
- Discrepancy between ideal MHD and experiment
- JET-ILW pre-ELM P_e^{ped}
- Discrepancy between theory and experiment
- Non-ideal simulations (resistivity, viscosity, diamagnetic etc.)
- JET-ILW pre-ELM P_{e}^{ped}
- Discrepancy between theory and experiment
- Non-ideal simulations (resistivity, viscosity, diamagnetic etc.)
- JOREK predicts MHD activity at experimental p_{ped}
 → Could improve EPED predictions [P. Snyder – NucFus.2011]
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
Nonlinear Mode Coupling

- In most cases, ELM is quasi-linear
- Nonlinear coupling could be a necessary ingredient for ELM dynamics
- Mode coupling needed for realistic filament structures
- Multiple filaments merge and resulting filament expelled through separatrix
- Motivations
- The JOREK code
- JET simulations
- Eich scan
- Ideal & non-ideal stability
- Nonlinear stability
- The future
Multiple ELMs

- ELM frequency depends on heating
- 2nd ELM size depends on heating
MAST: The local (left) and global (right) KBM growth rates at the most unstable pedestal location as a function of β.

[S.Saarelma, submitted PPCF (2016)]
- Validation of JOREK under way
- The energy transport is reproduced
- ELM stability is the main issue
- Nonlinear stability could be key
- Multiple ELM-cycles are needed

Please visit www.jorek.eu