Development of High Poloidal Beta, Steady-state Scenario with ITER-like Tungsten Divertor on EAST

by

A.M. Garofalo

with

General Atomics, San Diego, California, USA
Institute of Plasma Physics, Chinese Academy of Sciences, Hefei, Anhui, China
Plasma Science and Fusion Center, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
CEA, IRFM, 13108, Saint-Paul-Les-Durance Cedex, France
Department of Physics and Astronomy, University of California at Los Angeles, Los Angeles, California, USA
Princeton Plasma Physics Laboratory, Princeton, New Jersey, USA
Lawrence Livermore National Laboratory, Livermore, California, USA

Presented at the
26th IAEA Fusion Energy Conference
Kyoto, Japan
17–22 October 2016

Work supported in part by the National Magnetic Confinement Fusion Program of China (No.2015GB102002), and by the U.S. Department of Energy, Office of Science, Office of Fusion Energy Sciences (Cooperative Agreement #DE-SC0010685 and Contract Nos. DE-SC-0010492, DE-FG02-01ER54615).
Experiments on EAST Achieve First Long Pulse H-mode Operation with Tungsten Divertor

- Up to 65 s, sustained with loop voltage ~ 0
- ~4 MW RF heating
- $H_{98y2} \sim 1.1$
EAST/DIII-D Partnership: Sharing of Resources Accelerates Progress toward Fusion Energy

- Fully non-inductive high bootstrap scenario on DIII-D achieves performance attractive for fusion reactor
 - Broad current profile + high $\beta_P \rightarrow$ large-radius ITB, excellent confinement also without rotation
- **Key challenges:** long pulse, compatibility with tungsten wall

Long Pulse Initiative: extend high performance DIII-D discharges to true steady-state on superconducting EAST
EAST/DIII-D Partnership: Sharing of Resources Accelerates Progress toward Fusion Energy

- Fully non-inductive high bootstrap scenario on DIII-D achieves performance attractive for fusion reactor
 - Broad current profile + high $\beta_p \rightarrow$ large-radius ITB, excellent confinement also without rotation

- **Key challenges:** long pulse, compatibility with tungsten wall

Long Pulse Initiative: extend high performance DIII-D discharges to true steady-state on superconducting EAST

Demonstrate long pulse H-mode operation with tungsten divertor

- Gain access to H-mode
- Develop tools to optimize q-profiles, broaden ITB
- Increase β_p toward DIII-D performance
EAST/DIII-D Partnership: Sharing of Resources Accelerates Progress toward Fusion Energy

- Fully non-inductive high bootstrap scenario on DIII-D achieves performance attractive for fusion reactor
 - Broad current profile + high $\beta_P \rightarrow$ large-radius ITB, excellent confinement also without rotation
- Key challenges: long pulse, compatibility with tungsten wall

Long Pulse Initiative: extend high performance DIII-D discharges to true steady-state on superconducting EAST

Demonstrate long pulse H-mode operation with tungsten divertor

Gain access to ITB

Develop tools to optimize q-profiles, broaden ITB

Increase β_P toward DIII-D performance
EAST/DIII-D Partnership: Sharing of Resources Accelerates Progress toward Fusion Energy

- Fully non-inductive high bootstrap scenario on DIII-D achieves performance attractive for fusion reactor
 - Broad current profile + high $\beta_P \rightarrow$ large-radius ITB, excellent confinement also without rotation
- **Key challenges:** long pulse, compatibility with tungsten wall

Long Pulse Initiative: extend high performance DIII-D discharges to true steady-state on superconducting EAST

- Demonstrate long pulse H-mode operation with tungsten divertor
- Gain access to ITB
- Develop tools to optimize q-profile, broaden ITB
- Increase β_P toward DIII-D performance
EAST/DIII-D Partnership: Sharing of Resources Accelerates Progress toward Fusion Energy

- Fully non-inductive high bootstrap scenario on DIII-D achieves performance attractive for fusion reactor
 - Broad current profile + high $\beta_P \rightarrow$ large-radius ITB, excellent confinement also without rotation
- **Key challenges:** long pulse, compatibility with tungsten wall

Long Pulse Initiative: extend high performance DIII-D discharges to true steady-state on superconducting EAST

- Demonstrate long pulse H-mode operation with tungsten divertor
- Gain access to ITB
- Develop tools to optimize q-profile, broaden ITB
- Increase β_P toward DIII-D performance
Upper Divertor on EAST Is Prototyping a Water-cooled Tungsten Divertor for ITER

- Based on cassette technology
- ITER-like W monoblocks
 - Divertor targets (10 MW/m²)
- ITER-like W/Cu flat type PFCs
 - Divertor dome and baffles (~20 MW/m²)

See also G.-N. Luo, MPT/1-2Ra
Previous Long Pulse H-modes Limited by Strong Influxes of Tungsten
Previous Long Pulse H-modes Limited by Strong Influxes of Tungsten

- In one of two special locations, some armors were connected by mechanical joint (instead of Hot Isostatic Pressing)
Previous Long Pulse H-modes Limited by Strong Influxes of Tungsten

- In one of two special locations, some armors were connected by mechanical joint (instead of Hot Isostatic Pressing)

- Larger thermal contact resistance
Previous Long Pulse H-modes Limited by Strong Influxes of Tungsten

- In one of two special locations, some armors were connected by mechanical joint (instead of Hot Isostatic Pressing)

- Larger thermal contact resistance \rightarrow overheating & melting

Tungsten influx
Redesigned Monoblock Units with Improved Heat Transfer

- New monoblock units with three standard tungsten armors to replace U-shape armor have been developed and installed.
Redesigned Monoblock Units with Improved Heat Transfer Lead to Record Long Duration H-mode

- New monoblock units with three standard tungsten armors to replace U-shape armor have been developed and installed

- Duration not limited by machine capability
- Excellent particle exhaust
- Stationary W divertor temperature
Redesigned Monoblock Units with Improved Heat Transfer Lead to Record Long Duration H-mode

- Duration not limited by machine capability
- Excellent particle exhaust
- Stationary W divertor temperature

Stationary current profile with $q_{\text{min}} \approx 1.5$

Safety factor

$t=20$ s
$t=40$ s
$t=60$ s

$B_T = 2.5$ T

$<n_e> (10^{19}/m^3)$

P_{rad} (MW)

LHW (MW)

$ECRH$ (MW)

$ICRF$ (MW)

Div. Temperature ($^\circ$C) by IR

Heat flux (MW/m2)

Loop voltage (V)
Steady-state eITB Features (H$_{98y2}$~1.1) Observed in Long Pulse H-mode Discharges

- Peaked T_e profile and improved confinement are stationary (tens of seconds)
- Power balance analysis shows significantly reduced χ_e in plasma core
- Core T_e profile meets ITB criterion
 - $\rho^{*}_{Te}(max)=0.02 > \rho^{*}_{ITB}\sim 0.014$
 - [Tresset, NF 2002]
Steady-state at High Performance Requires Increased Injected Power and Improved Confinement ($H_{98y2} \geq 1.3$)

- 0D modeling of steady-state solutions at $I_p = 450$ kA
- Up to 16 MW of steady-state injected power to become available in near future
- $\beta_p > 2$ with higher density and higher injected power, if $H_{98y2} \geq 1.3$
Steady-state at High Performance Requires Increased Injected Power and Improved Confinement ($H_{98y2} \geq 1.3$)

- 0D modeling of steady-state solutions at $I_p = 450$ kA
- Up to 16 MW of steady-state injected power to become available in near future
- $\beta_p > 2$ with higher density and higher injected power, if $H_{98y2} \geq 1.3$

Broaden the current profile to expand ITB radius and increase H, similar to DIII-D experiments
Standard Techniques to Broaden the Current Profile Only Work Transiently

- Application of early heating power (with/without early H-mode transition) affects early ℓ_i evolution, but leads to same final state
 - Current relaxation time, $\tau_{CR} \sim 0.4$ s \ll pulse length
Stationary, Lower ℓ_i Achieved by Increasing Density in LH Current-driven Plasmas

- L-mode discharges
- Radial penetration of LH wave slower at higher density
 - Expect wave to be fully absorbed closer to plasma edge
- Loop voltage ~ 0
Stationary, Lower ℓ_i Achieved by Increasing Density in LH Current-driven Plasmas

- **L-mode discharges**
- **Radial penetration of LH wave slower at higher density**
 - Expect wave to be fully absorbed closer to plasma edge
- **Loop voltage ~ 0**
Stationary, Lower ℓ_i Achieved by Increasing Density in LH Current-driven Plasmas

- L-mode discharges
- Radial penetration of LH wave slower at higher density
 - Expect wave to be fully absorbed closer to plasma edge
- Loop voltage ~ 0
Stationary, Lower ℓ_i Achieved by Increasing Density in LH Current-driven Plasmas

- L-mode discharges
- Radial penetration of LH wave slower at higher density
 - Expect wave to be fully absorbed closer to plasma edge
- Loop voltage ~ 0
Stationary, Lower ℓ_i Achieved by Increasing Density in LH Current-driven Plasmas

- L-mode discharges
- Radial penetration of LH wave slower at higher density
 - Expect wave to be fully absorbed closer to plasma edge
- Loop voltage ~ 0
- Time of analysis is after $>5\tau_{CR}$ of operation at \simzero loop voltage
 - Negligible Ohmic current

Time for equilibrium reconstructions
Equilibrium Reconstructions Confirm Broader Current Profile at Higher Density

- Steady-state negative central shear obtained at high density
Equilibrium Reconstructions Confirm Broader Current Profile at Higher Density

- Steady-state negative central shear obtained at high density

“High performance synergy” between broad current profile and high density
Current Profile Reconstruction Enhanced by New Polarimetry-Interferometry (POINT) Diagnostic

- POINT → line-integrated measurements of internal magnetic field and plasma density
- Provides sufficient constraint to reveal hollow current profile
 - Uncertainty estimate constructed by the Monte Carlo method of uncertainty propagation

See also W.X. Ding, EX/P7-16
Current Profile Reconstruction Enhanced by New Polarimetry-Interferometry (POINT) Diagnostic

- POINT → line-integrated measurements of internal magnetic field and plasma density
- Provides sufficient constraint to reveal hollow current profile
 - Uncertainty estimate constructed by the Monte Carlo method of uncertainty propagation

With no Ohmic current, profile of $J_{\text{Tot}} - J_{\text{BS}}$ can be compared directly to J_{LHCD} simulation

See also W.X. Ding, EX/P7-16
LHCD Modeling Reproduces Trend of Broader Profiles at Higher Density

- GENRAY/CQL3D and C3PO/LUKE give similar results.

- Matching experiment magnitude requires anomalous fast electron transport, $D_r > 0$.
 - Similar to results from other tokamaks.

\[<J_{\text{Tot}}> - <J_{\text{BS}}> \text{ (A/cm}^2\text{)} \]
LHCD Modeling Reproduces Trend of Broader Profiles at Higher Density

- GENRAY/CQL3D and C3PO/LUKE give similar results
- Matching experiment magnitude requires anomalous fast electron transport, \(D_r > 0 \)
 - Similar to results from other tokamaks

\[
\begin{array}{c|cccc}
D_r (\text{m}^2/\text{s}) & 1.15 & 1.3 & 0.8 & 0.8 \\
n_e (10^{19} \text{ m}^{-3}) & 2 & 2.5 & 3 & 3.3 \\
\end{array}
\]

- Optimal \(D_r \) is smaller at higher density
LHCD Modeling Reproduces Trend of Broader Profiles at Higher Density

- GENRAY/CQL3D and C3PO/LUKE give similar results
- Matching experiment magnitude requires anomalous fast electron transport, $D_r > 0$
 - Similar to results from other tokamaks

<table>
<thead>
<tr>
<th>D_r (m2/s)</th>
<th>1.15</th>
<th>1.3</th>
<th>0.8</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_e (10^{19} m$^{-3}$)</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

- Optimal D_r is smaller at higher density
- $D_r \sim 1$ m2/s consistent with $\delta B/B \leq 10^{-4}$

 [Rechester-Rosenbluth, PRL 1978]
LHCD Modeling Reproduces Trend of Broader Profiles at Higher Density

- GENRAY/CQL3D and C3PO/LUKE give similar results
- Matching experiment magnitude requires anomalous fast electron transport, $D_r > 0$
 - Similar to results from other tokamaks

<table>
<thead>
<tr>
<th>D_r (m2/s)</th>
<th>1.15</th>
<th>1.3</th>
<th>0.8</th>
<th>0.8</th>
</tr>
</thead>
<tbody>
<tr>
<td>n_e (10^{19} m$^{-3}$)</td>
<td>2</td>
<td>2.5</td>
<td>3</td>
<td>3.3</td>
</tr>
</tbody>
</table>

- Optimal D_r is smaller at higher density
- $D_r \sim 1$ m2/s consistent with $\delta B/B \leq 10^{-4}$
 [Rechester-Rosenbluth, PRL 1978]

- Simulated profiles are systematically broader than experiment
 → “Tail” model may yield better agreement
EAST Achieves First Long Pulse H-mode with Zero Loop Voltage and ITER-like W Divertor

- 65 seconds, not limited by machine capability
- Steady-state improved confinement ($H_{98y2} \approx 1.1$) with low core χ_e and eITB features
- Broader current profile by increasing the density for more off-axis lower hybrid current drive
 - Modeling of LHCD has challenges, but can predict the experimental trend
EAST Achieves First Long Pulse H-mode with Zero Loop Voltage and ITER-like W Divertor

- 65 seconds, not limited by machine capability
- Steady-state improved confinement ($H_{98y2} \approx 1.1$) with low core χ_e and eITB features
- Broader current profile by increasing the density for more off-axis lower hybrid current drive
 - Modeling of LHCD has challenges, but can predict the experimental trend

Landmark progress made toward demonstration of steady state high performance for a fusion reactor
EAST Achieves First Long Pulse H-mode with Zero Loop Voltage and ITER-like W Divertor

- 65 seconds, not limited by machine capability
- Steady-state improved confinement ($H_{98y2} \sim 1.1$) with low core χ_e and eITB features
- Broader current profile by increasing the density for more off-axis lower hybrid current drive
 - Modeling of LHCD has challenges, but can predict the experimental trend

Landmark progress made toward demonstration of steady state high performance for a fusion reactor

➢ Next step: Optimize ITB with higher β_P and broader current profile