Synergetic effects of collisions, turbulence and sawtooth crashes on impurity transport.

X. Garbet1, J.H. Ahn1, S. Breton1, P. Donnel1, D. Esteve1, R. Guirlet1, H. Lütjens2, T. Nicolas3, Y. Sarazin1, C. Bourdelle1, O. Février1, G. Dif-Pradalier1, P. Ghendrih1, V. Grandgirard1, G. Latu1, J.F. Luciani2, P. Maget1, A. Marx2, A. Smolyakov4

1) CEA, IRFM, F-13108 Saint Paul-lez-Durance, France
2) Centre de Physique Théorique, Ecole Polytechnique, CNRS, Palaiseau, France
3) Swiss Plasma Center, Switzerland
4) University of Saskatchewan, Saskatoon, Canada
Motivation: impurity transport

- Tungsten plasma facing components → impurity accumulation in the core?

- Neoclassical and turbulence transport processes compete
 Casson 13, Angioni 14

- Interplay with MHD events: tearing modes, ELMs, sawtooth crashes
 Hender 16, Sertoli 15

Asdex Upgrade – tungsten density

X. Garbet, 26th IAEA FEC, 21 Oct. 2016 | PAGE 2
1) Interaction between turbulent and neoclassical transport.

2) Interaction between sawtooth cycles and neoclassical transport.

Punchline: interplay between different contributions to impurity transport are mediated by large scale flows.
Impurity transport modelled with gyrokinetics or MHD with closure

- Gyrokinetic description (GYSELA code): \(\frac{d}{dt}F = C(F) + \) Poisson equation → neoclassical and turbulent transport Grandgirard 16
- MHD equations (XTOR code) + impurity density and momentum equations Lütjens 10

\[
\frac{\partial N}{\partial t} + \nabla \cdot (NV) = \nabla \cdot \left(DN - \nabla N \right) = \left\langle N \nabla V \right\rangle_{turb}
\]

\[
Nm \left(\frac{\partial}{\partial t} + V \cdot \nabla \right)V = Ne \left(E + V \times B \right) - \nabla \cdot \Pi + R
\]

→ Pfirsch-Schlüter transport included in the fluid dynamics
→ neoclassical and MHD transport
Impurity neoclassical flux is related to parallel friction force

- Neoclassical flux

\[\Gamma^\psi = -\frac{B_T R}{Z e} \left\langle \frac{R_{||}}{B} \right\rangle \]

- Pfirsch-Schlüter convection cell due to perpendicular compressibility Hinton & Hazeltine 76

- controls \(\Gamma^\psi \) at high collisionality \(\nu^*_Z > 1 \)
Neoclassical thermal screening works against accumulation

- General form of the impurity flux \(\Gamma_{Z\psi} \):
 \[
 \frac{\Gamma_{Z\psi}}{D_{\text{neo}} N_Z} = -\frac{\partial \ln N_i}{\partial r} + Z \frac{\partial \ln N_i}{\partial r} + H Z \frac{\partial \ln T_i}{\partial r}
 \]

 - Accumulation
 - Thermal screening

- Impurity collisional, ions weakly collisional \(H = -1/2 \)

- GYSELA benchmarked against theory and NEO code

Neoclassical and turbulent transport processes are synergetic

- Neoclassical and turbulent contributions isolated by playing with collisionality and symmetries
- Total flux ≠ neoclassical + turbulent

Turbulent, friction force $R_{\parallel Z} = 0$

Neoclassical $R_{\parallel Z} \neq 0$, axisymmetric $n=0$ modes only

Self-consistent $R_{\parallel Z} \neq 0$, all modes

Interplay is mediated by poloidal convective cells

- Turbulent Reynolds stress \rightarrow poloidal convective cells
- Poloidal asymmetries \rightarrow change neoclassical impurity flux
- // momentum transport, turbulence self-regulation

Diamond 05

![Graphs showing impurity density](image)
Curvature and ExB fluxes are anticorrelated

- Anti-correlation due to poloidal convective cells
- Thermal screening factor $H > -1/2$: consequence of static density poloidal asymmetries? Romanelli 98, Fülöp 99, Angioni 14, Breton 16
Fast relaxation of the impurity density profile during a sawtooth crash

- $\nabla N_i = 0$, $\nabla T_i \neq 0 \rightarrow$ screening
- Crash time $<<$ collision time \rightarrow neoclassical transport processes inefficient during crash
- Post-crash profile consistent with Kadomtsev model Kadomtsev 75, Porcelli 96, Nicolas 15

\[\frac{\langle N_z \rangle}{(\text{XTOR unit})} \]

\[\psi^{1/2} \]

Normalized minor radius

Ahn 16

+ before ST crash
- after ST crash
- Kadomtsev model

Before crash

After crash

$N_z(r)$

$\psi^{1/2}$

$r = r_{\text{inv}}$ \rightarrow

$r = r_{\text{mix}}$
ExB drift is the main cause of impurity transport during a sawtooth crash.

Poincaré map of magnetic field lines

Impurity density and stream function
ExB drift is the main cause of impurity transport during a sawtooth crash (cont.)

- ExB impurity flux ~ 10 flux due to magnetic flutter
- Consistent with SXR measurements on TFTR Nagayama 91
Sawteeth change the impurity profile on long time scales

- Neoclassical transport dominant during recovery phase, but ion temperature gradient is lower → weaker thermal screening effect
- Overall temperature profile flatter with sawteeth

![Impurity density profile - Ahn 16](chart.png)

X. Garbet, 26th IAEA FEC, 21 Oct. 2016 | PAGE 13
Interplay between turbulent and neoclassical transport processes:

- Poloidal convective cells generated by turbulence → poloidal asymmetries – total flux ≠ turbulent + neoclassical calculated separately. Should play at low rotation speed (e.g. EAST, WEST, ITER)

- Thermal screening gets weaker

Sawteeth cycles affect neoclassical transport

- Crashes flatten impurity density profile + lower main ion temperature gradient → thermal screening less efficient