Discovery of a New Wide-Pedestal Quiescent H-mode Regime at Low Torque in DIII-D

• QH-mode bifurcates to a wide-pedestal state at low torque (thus low ExB shear)
 - Stationary ELM-stable operation at zero net torque with excellent confinement

• Increased edge turbulent transport reduces pedestal pressure gradient allowing a higher pedestal

✓ Exciting potential ELM stable operation regime for future fusion reactor
Advances in the Understanding of Edge Harmonic Oscillation in QH-mode

Standard QH-mode relies on an Edge Harmonic Oscillation to regulate the edge

- Linear eigenmode structure from M3D-C1 modeling matches closely the EHO characteristics from various diagnostics

- Modeling confirms the importance of ExB rotation shear ($\omega_{E \times B}$) in destabilizing low-n EHO
 - Experimentally, lower $\omega_{E \times B}$ for exciting EHO correlates with lower pedestal v_e^*

✓ Improved confidence of QH access in ITER