Plasma Core Fuelling by Cryogenic Pellet Injection in the TJ-II Stellarator

K. J. McCarthya, N. Panaderoa, J. L. Velascoa, J. Hérnandezb, S. Sakateb, D. López Brunaa, R. Garcíaa, J. Baldzuhnc, A. Dinklagec, E. Ascasibara, and TJ-II Teama

aLaboratorio Nacional de Fusión, CIEMAT, Madrid, Spain, bNational Institute for Fusion Science, Toki, Gifu, Japan
cMax-Planck-Institut für Plasmaphysik, Greifswald, Germany

Summary

- Pellet penetration depths and ablation profiles for TJ-II are in reasonable agreement with IPADBASE predictions and in good agreement with NGS based modelling, respectively, for both ECRH and NBI.
- Radial particle deposition is well reflected by the Balmer H\textsubscript{\alpha} ablation profile. The radial offset between both is minimal for these LFS injections.
- Full particle distribution about the plasma occurs ~4 ms after injection.
- Subsequently, deposited pellet particles undergo partial diffusion, with enhanced central confinement, arising from neoclassical transport.
- Comparison between net electron gain and pellet particle content gives fuelling efficiency. The tendency observed for fuelling to increase with target plasma density.
- For future studies we need to tailor better pellet size to target plasma parameters (diameter, density, temperature).