A pressure-driven ideal $n = 1$ mode with a dominant $m/n = 2/1$ component shows a bifurcation in its nonlinear evolution depending on assumed dissipation levels.

One of the bifurcated states is a benign long-lived 2/1 mode that causes little confinement degradation.

The other is an explosive regime that, through a rapidly propagating ballooning finger, leads to a high-β disruption, reminiscent of some observations in JET and TFTR.

The long-lived mode itself is metastable; perturbations above a threshold can push it into the explosive regime and cause a disruption.