Effects of MHD instabilities on Neutral Beam current drive

and the NSTX-U Research Team

25th IAEA Fusion Energy Conference
St Petersburg, Russian Federation
13-18 October, 2014

Supported by U.S. DoE under contract DE-AC02-09CH11466
Reliable, quantitative predictions of Energetic Particle (EP) dynamics are crucial for burning plasmas

- EPs from Neutral Beam (NB) injection, alphas, RF tails drive instabilities,
 - e.g. Alfvénic modes – AEs

- With instabilities, ‘classical’ EP predictions (e.g. for NB heating, current drive) can fail

> Predictive tools are being developed, validated for integrated modeling of these effects in present and future devices (ITER, Fusion Nuclear Science Facility – FNSF)
Outline

• NSTX discharges with strong MHD are used to test and validate EP transport models

• Modeling methods beyond ‘classical’ EP physics are developed to account for MHD effects

• New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution
• NSTX discharges with strong MHD are used to test and validate EP transport models

• Modeling methods beyond ‘classical’ EP physics are developed to account for MHD effects

• New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution
Alfvénic modes (AEs) and kink–like modes degrade fast ion confinement, plasma performance

NSTX

Major radius 0.85 m
Aspect ratio 1.3
Plasma current \(\sim 1 \) MA
Toroidal field <0.55 T
Pulse length <2 s
Neutral Beam sources:
\[P_{\text{NBI}} \leq 6 \text{ MW} \]
\[E_{\text{injection}} \leq 95 \text{ keV} \]
\[1 < v_{\text{fast}} / v_{\text{Alfvén}} < 5 \]

Super–alfvénic ions, high \(\beta_{fi} \): plethora of fast ion driven instabilities

[Fredrickson, NF 2013]
Outline

- NSTX discharges with strong MHD are used to test and validate EP transport models

- Modeling methods beyond ‘classical’ EP physics are developed to account for MHD effects

- New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution
Transport code TRANSP includes NUBEAM module for classical fast ion physics

- Additionally, \textit{ad-hoc} diffusivity D_{fi} is used to mimic enhanced fast ion transport
 - Assumed uniform in radius, pitch, energy in this work

- Metric to set D_{fi}: match neutron rate, W_{mhd}

\[D_{fi} = \begin{cases} 0.0 \text{ m}^2/\text{s} \\ 1.0 \text{ m}^2/\text{s} \\ 2.0 \text{ m}^2/\text{s} \\ 5.0 \text{ m}^2/\text{s} \end{cases} \]

measured

simulated with $D_{fi}(t)$
However: instabilities introduce fundamental constraints on particle dynamics

From Hamiltonian formulation – single resonance:

\[\omega P_\zeta - nE = \text{const.} \quad \implies \quad \frac{\Delta P_\zeta}{\Delta E} = \frac{n}{\omega} \]

\(\omega = 2\pi f \), mode frequency \(n \), toroidal mode number

\(\Delta P_\zeta \) vs \(\Delta E \)

\(P_\zeta \sim mRv_{\text{par}} - \Psi \), canonical angular momentum

\(\mu \sim v_{\text{perp}}^2/(2B) \), magnetic moment

where \(\Psi \) : poloidal flux

\(R \) : major radius

\(m \) : mass
However: instabilities introduce fundamental constraints on particle dynamics

From Hamiltonian formulation – single resonance:

\[\omega P_\zeta - nE = \text{const.} \implies \frac{\Delta P_\zeta}{\Delta E} = \frac{n}{\omega} \]

\(\omega = 2\pi f \), mode frequency
\(n \), toroidal mode number

These effects are not accounted for by ad-hoc \(D_{fi} \). A new method is needed to include them in integrated modeling.
Constants of motion \((E, P_\zeta, \mu)\) are the natural variables to describe wave–particle interaction.

Effects of multiple TAE modes

\[\mu \frac{B_0}{E} \]

\[P_\zeta \]

\[R. B. White, \text{Theory of toroidally confined plasmas, Imperial College Press (2014)} \]
Particle-following codes are used to extract distribution of ‘kicks’ ΔE, ΔP_ζ for each bin (E,P_ζ,μ)

- ORBIT code: record E,P_ζ,μ vs. time for each particle
- Compute average kicks over multiple wave periods:
 \[
 \frac{1}{T_{\text{wave}}} < \frac{1}{\tau_{\text{resonance}}} < \frac{1}{\tau_{\text{collisions}}}
 \]
 neglected \hspace{1cm} \text{relevant time scale} \hspace{1cm} \text{classical}
- Re-bin for each (E,P_ζ,μ) region

Phase space, $E_0=80.0\text{keV}$

Effects of multiple TAE modes

ΔE_1, ΔE_2, ΔE_3, ΔE_N

$\Delta P_{\zeta 1}$, $\Delta P_{\zeta 3}$, $\Delta P_{\zeta 2}$, $\Delta P_{\zeta N}$

$	ext{neglected}$ \hspace{1cm} \text{relevant time scale} \hspace{1cm} \text{classical}$
New ‘kick model’ uses a **probability distribution function** for particle transport in \((E, P_\zeta, \mu)\) space.

Kicks \(\Delta E, \Delta P_\zeta\) are described by

\[
p(\Delta E, \Delta P_\zeta | P_\zeta, E, \mu, A)
\]

which includes the effects of multiple modes, resonances.

correlated random walk in \(E, P_\zeta\)

Phase space, \(E_0=80.0\text{keV}\)

Effects of multiple TAE modes

- lost ctr-passing
- lost trapped
- potato
- stagnation
- co-passing

ORBIT code modeling, random initialization of particles in phase-space

[Podestà, PPCF 2014]
\(p(\Delta E, \Delta P_\zeta | P_\zeta, E, \mu) \) and a time-dependent ‘mode amplitude scaling factor’ enable multi-mode simulations

- Example: toroidal AEs (TAEs) and low-frequency kink
- \(p(\Delta E, \Delta P_\zeta | P_\zeta, E, \mu) \) from particle-following code ORBIT
- Each type of mode has separate \(p(\Delta E, \Delta P_\zeta), A_{\text{mode}}(t) \)
- TAEs and kinks act on different portions of phase space
- Amplitude vs. time can differ, too
- Effects on EPs differ
 > TAEs: large \(\Delta E, \Delta P_\zeta \)
 > kinks: small \(\Delta E, \text{large } \Delta P_\zeta \)
p(ΔE,ΔP_ζ|P_ζ,E,μ) and a time-dependent ‘mode amplitude scaling factor’ enable multi-mode simulations

- Example: toroidal AEs (TAEs) and low-frequency kink
- p(ΔE,ΔP_ζ|P_ζ,E,μ) from particle-following code ORBIT
- Each type of mode has separate p(ΔE,ΔP_ζ), A_{mode}(t)
- TAEs and kinks act on different portions of phase space
- Amplitude vs. time can differ, too

- Effects on EPs differ
 > TAEs: large ΔE, ΔP_ζ
 > kinks: small ΔE, large ΔP_ζ
\(p(\Delta E, \Delta P_\zeta | P_\zeta, E, \mu) \) and a time-dependent ‘mode amplitude scaling factor’ enable multi-mode simulations

- Example: toroidal AEs (TAEs) and low-frequency kink
- \(p(\Delta E, \Delta P_\zeta | P_\zeta, E, \mu) \) from particle-following code ORBIT
- Each type of mode has separate \(p(\Delta E, \Delta P_\zeta), A_{\text{mode}}(t) \)
- TAEs and kinks act on different portions of phase space
- Amplitude vs. time can differ, too
- Effects on EPs differ
 - TAEs: large \(\Delta E, \Delta P_\zeta \)
 - kinks: small \(\Delta E, \) large \(\Delta P_\zeta \)
Outline

- NSTX discharges with strong MHD are used to test and validate EP transport models
- Modeling methods beyond ‘classical’ EP physics are developed to account for MHD effects
- New model captures MHD modifications of EP phase space leading to Neutral Beam current redistribution
Two NSTX cases are analyzed in detail: TAE avalanche and avalanche + kink–like mode (multi–mode scenario)

TAE avalanches + kink-like mode
Two NSTX cases are analyzed in detail: TAE avalanche and avalanche + kink–like mode (multi–mode scenario)
TAE avalanches cause an abrupt drop in fast ions and up to \(~40\%\) reduction in local NB–driven current density

- Results from ‘kick model’
- Fast ions redistributed outward, lose energy
 - Consistent with constraints from resonant interaction:
 \[\frac{\Delta P_\zeta}{\Delta E} = n/\omega \]

- NB–driven current \(J_{nb}\) is also redistributed out
- \(J_{nb}(r)\) modification largely unpredicted by \textit{ad–hoc} \(D_{fi}\) in this case
TAE avalanches cause an abrupt drop in fast ions and up to ~40% reduction in local NB-driven current density

- Results from ‘kick model’
- Fast ions redistributed outward, lose energy
 - Consistent with constraints from resonant interaction:
 \[\frac{\Delta P_\zeta}{\Delta E} = \frac{n}{\omega} \]
- NB-driven current \(J_{nb} \) is also redistributed out
 - \(J_{nb}(r) \) modification largely unpredicted by ad-hoc \(D_{fi} \) in this case
TAE avalanches cause an abrupt drop in fast ions and up to ~40% reduction in local NB-driven current density

- Results from ‘kick model’
- Fast ions redistributed outward, lose energy
 - Consistent with constraints from resonant interaction:
 \[\Delta P_\zeta / \Delta E = n / \omega \]
- NB-driven current \(J_{nb} \) is also redistributed out
- \(J_{nb}(r) \) modification largely unpredicted by \textit{ad-hoc} \(D_{fi} \) in this case
Two NSTX cases are analyzed in detail: TAE avalanche and avalanche + kink-like mode (multi-mode scenario)

TAE avalanches

+ kink-like mode

\(n=1 \)

\(n=2 \)

\(n=3 \)

\(n=2-6 \)
Synergy between different classes of instabilities modifies MHD effects on $J_{nb}(r)$ – not captured by ad-hoc D_i.

- Kinks have broad radial structure, connect core to boundary.

> Synergy arises from mode overlap in phase space.
Synergy between different classes of instabilities modifies MHD effects on $J_{nb}(r)$ – not captured by ad-hoc D_f

- Kinks have broad radial structure, connect core to boundary

> Synergy arises from mode overlap in phase space
Phase-space is *selectively* modified by instabilities: TAEs $\rightarrow \Delta P_\zeta/\Delta E = n/\omega$, kinks \rightarrow mostly ΔP_ζ
Simulated neutron rate agrees with experiments for both TAE avalanches & multi-mode cases

Use ‘kick model’ coupled to stand-alone NUBEAM

![Graphs showing neutron rate and mode amplitude for TAEs and kink-like modes](image-url)
Summary

• NB–driven current profile can be strongly affected by MHD instabilities
 – Not all effects properly captured by classical EP physics

• A new model is implemented in TRANSP for EP simulations including phase–space details
 – Validation within TRANSP framework is in progress

• New tools will improve scenario development on NSTX Upgrade & future devices
 – NB current drive optimization
 – NB–driven current profile control for high–q_{min} steady state operations
‘Kick’ model exploits separation of typical time scales between instabilities and collisional processes

- 3 time scales characterize particle motion in the presence of instabilities:
 - $1/f_{\text{wave}} \sim 10\text{'s } \mu s$
 - $\tau_{\text{resonance}} > 10\times\tau_{\text{transit}} > 100\text{'s } \mu s$
 - $\tau_{\text{collisions}}, \tau_{\text{slowdown}} \gg \gg 1 \text{ ms}$

- Relevant time scale for *secular* $\Delta E, \Delta P_\zeta$ by waves is $\tau_{\text{resonance}}$

- Classical mechanisms already included in IM codes (TRANSP)
 - E.g. collisions, slowing down, atomic physics
Reduced models offer advantages for Integrated Modeling (IM), plasma control over \textit{first-principles} codes

- \textit{First-principles} codes not (yet) suitable for extensive ‘scans’ with multiple shots, long time-scale simulations
 - Inclusion in real-time control schemes also unpractical

- IM codes (e.g. TRANSP) have accurate treatment of atomic physics, ‘classical’ mechanisms
 - Reduced models for EP transport are good complement

- IM codes have much broader scope than just EP physics
 - Physics-based reduced models improve accuracy of simulations, retaining ‘generality’ of IM codes
Summary comparison of some reduced models used for EP transport

<table>
<thead>
<tr>
<th></th>
<th>ad-hoc D_{fi}</th>
<th>CGM model (*)</th>
<th>kick' model</th>
</tr>
</thead>
<tbody>
<tr>
<td>physics-based</td>
<td>no</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>required input</td>
<td>$D_{fi}(\rho,t)$</td>
<td>growth/damping rates</td>
<td>probability, mode amplitude</td>
</tr>
<tr>
<td>applicability</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>multi-mode</td>
<td>indirectly</td>
<td>multiple AEs</td>
<td>AEs, kinks, NTMs. Fishbones/EPMs?</td>
</tr>
<tr>
<td>steady-state</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>transients</td>
<td>yes</td>
<td>only for $\tau > \tau_{relax}$</td>
<td>yes</td>
</tr>
<tr>
<td>phase-space selectivity</td>
<td>modest</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>predictive runs</td>
<td>requires guess D_{fi}</td>
<td>requires mode spectrum: growth/damping</td>
<td>requires mode spectrum, amplitude</td>
</tr>
<tr>
<td>improvements</td>
<td>none planned</td>
<td>extend to 2D in velocity space</td>
<td>remove μ conservation</td>
</tr>
</tbody>
</table>

(*) CGM – Critical Gradient Model
see Gorelenkov TH/P1-2, Heidbrink EX/10-1
Simulations with *ad-hoc* D_{fi} show similar fast ion drops, but largely underestimate $J_{nb}(r)$ modification.

- Uniform D_{fi} acts in the same way on *all* particles at *all* radii.
- No constraints from wave–particle interaction.
 Scaling factor $A_{\text{mode}}(t)$ is obtained from measurements, or from other observables such as neutron rate + modeling

- If no mode data directly available, A_{mode} can be estimated based on other measured quantities

Example:
use measured neutron rate

- Compute ideal modes through NOVA
- Rescale relative amplitudes from NOVA according to reflectometers
- Rescale total amplitude based on computed neutron drop from ORBIT
- Scan mode amplitude w.r.t. experimental one, $A_{\text{mode}}=1$: get table
- Build $A_{\text{mode}}(t)$ from neutrons vs. time, table look-up
Mode amplitude can evolve on time-scales shorter than typical TRANSP/NUBEAM steps of \(\sim 5–10 \) ms.

\(F_{nb} \) evolution must be computed as a sequence of sub-steps:

- Duration \(\delta t_{\text{step}} \) sufficiently shorter than time-scale of mode evolution.
- Examples here have \(\delta t_{\text{step}} \sim 25–50 \) µs.

Energy and \(P_\zeta \) steps assumed to scale linearly with mode amplitude:

- Roughly consistent with ORBIT simulations.

\[A_{\text{mode}}[\text{a.u.}] \]

\[n_{\text{tor}}=2 \quad n_{\text{tor}}=4 \quad n_{\text{tor}}=6 \quad \text{total} \]

\[t-t_0 \text{ [ms]} \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \quad 1.4 \]

\[0.0 \quad 0.2 \quad 0.4 \quad 0.6 \quad 0.8 \quad 1.0 \quad 1.2 \quad 1.4 \]

\[\Delta E \text{ [keV/ms]} \]

\[-1.0 \quad -0.5 \quad 0.0 \quad 0.5 \quad 1.0 \]

\[\Delta P_\zeta \text{[a.u.]} \]

\[A_{\text{rel}}=0.50 \]

\[A_{\text{rel}}=1.00 \]

\[A_{\text{rel}}=1.50 \]

\[\sigma_E \text{[a.u.]} \]

\[10 \times \sigma_{P_\zeta} \]

\[0.0 \quad 0.1 \quad 0.2 \quad 0.3 \quad 0.4 \]

\[0.0 \quad 0.5 \quad 1.0 \]

\[\Delta E \text{ [keV/ms]} \]

\[\Delta P_\zeta \text{[a.u.]} \]

\[A_{\text{mode}} \text{[a.u.]} \]

\[0.0 \quad 0.5 \quad 1.0 \quad 1.5 \]
Each type of mode is characterized by its own amplitude vs time (e.g. from experiments)

For each type of mode, energy and P_ζ steps assumed to scale linearly with mode amplitude
 - Consistent with ORBIT simulations
Scheme to advance fast ion variables according to transport probability in NUBEAM module of TRANSP

NUBEAM step k

- read Plasma State, F_{nb} info
- read A_{mode}, $p(\Delta E, \Delta P_\zeta|E, P_\zeta, \mu)$
- convert $F_{nb}(E, p, R, Z)$ to $F_{nb}(E, P_\zeta, \mu)$

NUBEAM step $k+1$

- re-compute sources, scattering, slowing down, E, P_ζ “kicks”
- convert $F_{nb}(E, P_\zeta, \mu)$ to $F_{nb}(E, p, R, Z)$

loop – MC mini-steps

- sample $\Delta E_j, \Delta P_\zeta_j$
- evolve E_j, P_ζ_j
- diagnostics (e.g. classify orbit)

loop – F_{nb} particles

add “kicks” to F_{nb} variables
Spherical torus NSTX is well suited for NB physics studies, model validation

<table>
<thead>
<tr>
<th></th>
<th>NSTX</th>
<th>NSTX–U</th>
</tr>
</thead>
<tbody>
<tr>
<td>Major radius</td>
<td>0.85 m</td>
<td>0.9 m</td>
</tr>
<tr>
<td>Aspect ratio</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td>Plasma current</td>
<td>~1 MA</td>
<td><2 MA</td>
</tr>
<tr>
<td>Toroidal field</td>
<td><0.55 T</td>
<td><1 T</td>
</tr>
<tr>
<td>Pulse length</td>
<td><2 s</td>
<td><5 s</td>
</tr>
</tbody>
</table>

Neutral Beam sources:

- \(P_{\text{NBI}} \leq 6 \, \text{MW} \)
- \(E_{\text{injection}} \leq 95 \, \text{keV} \)

New NBI set on NSTX-U will enable more flexible NB current drive

[Menard, NF 2012]
Predicted NSTX-U scenario with strongly peaked fast ion pressure has unstable TAEs

- Fast ion pressure is >2 times larger than in reference NSTX discharge

- NOVA-K finds spectrum of (linearly!) unstable TAEs with $n=3-6$

- Predicted mode structure is narrower on NSTX-U than for typical NSTX
‘Kick’ and ad–hoc D_{fi} models predict comparable reduction of total J_{nb} – but profiles are very different

- Reduction in total J_{nb} is modest, <20%
- Local $J_{nb}(r)$ changes are much larger
- ‘Kick model’ predicts localized reduction of $J_{nb}(r)$ because of narrow mode structures
- Non-linear physics may result in broader modes, though