Development of the Q=10 Scenario for ITER on ASDEX Upgrade (AUG)

Josef Schweinzer1,
M. Beurskens2, E. Joffrin3, C. Angioni1, V. Bobkov1, M. Dunne1, R. Dux1, R. Fischer1, C. Fuchs1, A. Kallenbach1, C. Hopf1, F. Laggner4, P.T. Lang1, M. Maraschek1, A. Mlynek1, Th. Pütterich1, F. Ryter1, J. Stober1, W. Suttrop1, G. Tardini1, E. Wolfrum1, H. Zohm1 and the ASDEX Upgrade team

1 Max Planck Institute for Plasma Physics, 85748 Garching, Germany
2 CCFE, Culham Science Centre, Abingdon, OX14 3DB, UK
3 CEA, Centre de Cadarache, 13108 Saint Paul-lez-Durance, France
4 Institute of Applied Physics, Vienna University of Technology, Austria

\textit{25th IAEA Fusion Energy Conference (FEC 2014)
St. Petersburg, Russia, 13-18 October 2014}
Introduction / Motivation

ITER baseline scenario, aims:

- Q~10, producing 500MW of fusion power for 300-500s.

Baseline scenario (BL):

$$15\text{MA}/5.3\text{T}, q_{95}=3, n_e/n_{GW}=f_{GW}=0.85, H_{98}=1, \beta_N \sim 1.8, \text{high } \delta$$

- Working or operation point defined on machines with Carbon wall

- Scenario demonstration at devices with metallic wall like AUG-W (Alcator C-Mod and JET-ILW) in view of ITER is required

- Matching parameters for demonstration on AUG are: q_{95}, f_{GW}, H_{98}, β_N (or $P_{\text{heat}}/P_{\text{L-H}}$), δ and hence NOT ν^*, ρ^*
ITER baseline scenario on ASDEX Upgrade (AUG-W)

1.1 MA / 1.8T w. X3 ECRH

- Ramp-up in low δ configuration
- Stationary discharges as long as enough gas puff and central heating

1.2 MA / 2.0T w. ICRH

FEC 2014, St. Petersburg, Russia, 17 Oct. 2014
J. Schweinzer
Confinement in ITER BL scenario at AUG
(black = AUG-C, low & high δ, coloured = AUG-W, high δ only)

- Existence diagrams for H_{98y2} vs. f_{GW} (left) and H_{98y2} vs. β_N (right)
- Rising triangularity improves confinement at higher n/n_{GW}
- At low P_{heat} ($\beta_N \leq 1.8$) confinement $H_{98y2} \leq 0.85$ in AUG-W
Major issue: ELM behaviour

- although significant D_2 puff, low $f_{ELM} = 13$ Hz
- W_{ELM} up to 200kJ or 25% of W_{MHD}

IR Thermography:
- high heat flux on outer target plate during ELM
Mitigation of ELMs in the ITER BL scenario

ELM mitigation attempts done using:

• pellets for ELM pacing
• nitrogen seeding
• magnetic perturbation (MP) fields
ELM pacing w. pellets in ITER BL scenario in AUG-W

ELM frequency not always elevated by pellets:

- ELM not **reliably triggered**
- ELM size **still very large**
- ELM duration decreased (though ’loss tail’ still present)

Next step: in combination with N-seeding the trigger probablity should go up
Attempt of ELM pacing, with pellets + N-seeding

- N-puff slowly ramped up (t>3.6s) max. level $8 \cdot 10^{21}$ e⁻/s
- 70 Hz Pellets from 4s with reduced D-puff level
- ΔW_{ELM} smaller with N
- Pellets increase f_{ELM}
- c_W increase with pellet onset
- Pellets drive discharge towards density limit $f_{\text{GW}} \to 1$

\Rightarrow scenario not stationary yet
Attempt at (R)MP mitigation in ITER Baseline
(MP-coils active in the shaded area)

- ITER BL, MP mitigation not achieved, although \(f_{GW} \sim 1 \)
- low \(q_{95} \) reduces collisionality

ELM mitigation at high density using \(n=2 \), MPs:
- threshold of pedestal top density (or collisionality) has to be exceeded
Demonstration of ITER BL scenario at AUG difficult

Achieved:
• Operation at $q_{95}=3$ demonstrated at $H_{98}=1$, $\beta_N > 2$, $f_{GW} \sim 0.85$

BUT:
• Large ELMs (also observed at JET both JET-C & JET-ILW) - integration of ELM mitigation not achieved until now
• At relevant $P_{\text{heat}} (\sim 1.3 \, P_{L-H})$ confinement $H_{98} \leq 0.85$

$q_{95} = 3$ seems to be a difficult corner in the operational space ->
try to find alternative operational point for $Q=10$
Proposal: Operation could move to higher q_{95} (lower I_p)

For scaling (at similar density), keeping P_{fus} and G constant:

(Peeters et al., Nucl. Fusion 47 (2007) 1341–1345)

\[P_{fus} = 2.77 \left(\frac{\beta_N}{q_{95}} \right)^2 \]

Fusion power normalized to the ITER value

\[G = \frac{Q}{Q + 5} = 10.8 \frac{H_{98}^3}{\beta_N q_{95}^2} \]

Alternative operation point for $Q = 10$, keeping P_{fus} and G constant

for $q_{95} = 3.6$: $\beta_N \sim 2.2$, $H_{98} = 1.2$ (ITER $I_p \sim 12$ MA)

• Implications for required target density:
 • pedestal n_e as high as possible (for exhaust)
 • higher $n_{e0}/<n_e>$ (w. pellets) to reach $f_{GW} \sim 1$
• Keep high triangularity to reach simultaneously good confinement at high f_{GW}
Comparison $q_{95} = 3$ to $q_{95} = 3.6$ at same P_{heat} (P_{\text{heat}}$ chosen to get $\beta_N \sim 1.8$ for $q_{95} = 3$ case)
Comparison $q_{95} = 3$ to $q_{95} = 3.6$ at same P_{heat}

(P_{heat} chosen to get $\beta_N \sim 1.8$ for $q_{95} = 3$ case)

- same P_{heat} leads to same W_{MHD}
- P_{heat} 30% above $P_{L\rightarrow H}$
Comparison $q_{95} = 3$ to $q_{95} = 3.6$ at same P_{heat}

(P_{heat} chosen to get $\beta_N \sim 1.8$ for $q_{95} = 3$ case)

- $q_{95} = 3.6$ scenario allows lower gas puff rate
- $H_{98y2} > 1$
Comparison $q_{95} = 3$ to $q_{95} = 3.6$ at same P_{heat}

(P_{heat} chosen to get $\beta_N \sim 1.8$ for $q_{95} = 3$ case)

- ELM signature similar in both scenarios
- Phase with MP reduces confinement, but does not affect ELMs
Comparison $q_{95} = 3$ to $q_{95} = 3.6$ at same P_{heat} (\(P_{\text{heat}}\) chosen to get $\beta_N \sim 1.8$ for $q_{95} = 3$ case)

- Same W_{MHD} confirmed by kinetic profiles
- Same f_{GW}, less absolute n_e in $q_{95} = 3.6$ case
- Edge n_e rather similar

Conclusion: Promising performance of 'alternative ITER BL', but ELM behaviour unchanged.
'Alternative ITER BL' plasmas ($q_{95}=3.6$) with and without type-II ELMs

- Closeness to DN configuration (parameter d_{RXP}) decisive for switch to type-II ELMs
Alternative ITER BL plasmas \((q_{95}=3.6)\) with and without type-II ELMs

- Parameter \(d_{\text{RXP}}\) changes energy confinement
'Alternative ITER BL' plasmas (q_{95}=3.6)
Nitrogen seeding in phase with type-II ELMs

Nitrogen seeding recovers energy confinement transiently and leads to W accumulation
Type-II ELMs observed in 'alternative ITER BL' plasmas ($q_{95}=3.6$) – typical signature as in the past

- MHD behaviour similar as for the type-II ELMs observed in the past at $q_{95}=5.5$
- Profiles show no significant change in edge gradient
- Type-II ELM pedestal has slightly lower $T_{e,\text{ped}}$ and higher $n_{e,\text{ped}}$

Shape changes are very small:
- Type-I ELMs
- Type-II ELMs

Existence of type-II ELMs extended to $q_{95} = 3.6$ in AUG
Operational range (gas puff level, wall conditions) considerably larger than in $q_{95}=3$ scenario, less prone to W-accumulation.

First results for ‘alternative’ ITER BL (target: $H_{98y2}=1.2$, $\beta_N=2.2$, $f_{GW}>0.9$) promising, but confinement off target by 10%.

Cold divertor operation by N-seeding not yet stationary.
Summary

• $q_{95} = 3$ ITER BL:
 • With 3.8 MW NBI + 1.8 MW ICRH discharge at $\beta_N = 1.8$ established, but H_{98} below 1.

• $q_{95} = 3.6$ ‘alternative ITER BL’:
 • At low P_{heat} promising performance achieved
 • Extended operational window compared to $q_{95} = 3$
 • Type-II ELMs rediscovered

For both scenarios:

• ELM mitigation techniques still need to be integrated

• Operation with ‘cold divertor’ (by N-seeding) in both scenarios not stationary so far. Attempts with higher puff rates for D and N on the agenda for next experiments
Operation in Helium compared with Deuterium

- **0.8 MA / 1.4 T**, Both discharges performed ~20 days after boronization
- **Deuterium** reference discharge suffers from W-accumulation

Helium discharge shows stable W behaviour
Operation in Helium compared with Deuterium

- **He** plasma has same n_e, T_e (and likely same T_i, not measured) as D plasma, with 1.5 less particles (both discharges at 0.8 MA / 1.4 T)
- This is consistent with global stored energy (W_{MHD} in D \sim 1.5 W_{MHD} in He)
Summary: Helium operation

- A few discharges were performed with the following technical boundary conditions:
 - Helium not pumped by AUG cryo-pumps
 - He-NBI not possible -> D$_2$-NBI used in all discharges
 - Discharges were performed under almost un-boronized wall conditions
- Low current He operation (0.8 MA) even without central wave heating