EX/3-3: Pedestal Confinement and Stability in JET-ILW ELMy H-modes

CF Maggi
Max Planck Institut für Plasmaphysik, Garching, Germany
25th IAEA FEC Conference, St Petersburg, Russian Federation, 2014
Acknowledgements

S. Saarelma1, M. Beurskens1, C. Challis1, I. Chapman1, E. de la Luna2, J. Flanagan1, L. Frassinetti3, C. Giroud1, J. Hobirk4, E. Joffrin5, M. Leyland6, P. Lomas1, C. Lowry7, G. Maddison1, J. Mailloux1, I. Nunes8, F. Rimini1, J. Simpson1, A.C.C. Sips7, H. Urano9 and JET Contributors*

\textbf{JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK}

1CCFE, Culham Science Centre, Abingdon OX14 3DB, UK
2Asociacion CIEMAT, Madrid, Spain
3Association VR, Fusion Plasma Physics, KTH, SE-10044 Stockholm, Sweden
4Max Planck Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
5CEA, IRFM, F-13108 Saint-Paul-lez-Durance, France
6York Plasma Institute, Department of Physics, University of York, York YO10 5DD, UK
7European Commission, B1049 Brussels, Belgium
8Associação IST, Instituto Superior Técnico, Av Rovisco Pais, 1049-001 Lisbon, Portugal
9Japan Atomic Energy Agency, 801-1 Muko-yama, Naka, Ibaraki 311-0193, Japan

*See the Appendix of F. Romanelli et al., Proc. 25th IAEA FEC 2014, St Petersburg, Russian Federation
In JET-ILW, H-mode operation needs to be compatible with W control

- Lower $T_{e,\text{PED}}$ in initial phase of JET-ILW at all densities
- → Confinement loss is dominantly in pedestal
- N_2 seeding in high δ H-modes allows recovery of $T_{e,\text{PED}}$ to values approaching JET-C

(2.4-2.6 MA / 2.3-2.7 T, $P_{\text{NBI}} = 12-16$ MW), $\beta_N \sim 1.2$

Similar p_{PED} at low and high δ in JET-ILW at low β_N (~ 1.2)

[Beurskens, PPCF 2013]
[Giroud, Nucl. Fusion 2013]
Experiments in 2013-2014 with the JET-ILW have investigated the pedestal confinement and stability with respect to:

- Triangularity
- Beta
- Neutrals (D and low-Z impurities)
• Lower $T_{e,PED}$ \rightarrow Higher $\nu_{*P Pedro}$ \rightarrow lower bootstrap current
• \rightarrow plasma shaping barely affects the achievable pedestal height
• Similar p_{PED} at low and high δ

Triangularity alone does not recover pedestal height
Pedestal pressure and beta

- high-δ, high β_p
- high-δ
- low-δ

• Increasing power/beta increases p_{PED} both at low and high δ
• At low beta similar pedestal pressures
• At high δ, stronger increase in p_{PED} with power at constant density

Challis, EX/9-3

Low D_2 gas injection
Pedestal stability consistent with P-B

- Increasing core pressure stabilises ballooning modes due to Shafranov shift, which raises P-B boundary

- Pedestals limited by intermediate-\(n\) P-B instabilities before type I ELM crash, both at low and high \(\delta\)

Low \(D_2\) gas injection

Challis, EX/9-3
Power scans at higher gas rates

- Higher D_2 gas rate, typical of JET-ILW steady H-modes

$1.4\text{MA}/1.7\text{T}$, Low triangularity

- Lower β_N at higher D_2 gas rate
- Type I ELMs
- Lower p_{PED} at larger gas rate

$P_{\text{sep}} = P_{\text{heat}} - P_{\text{rad,bulk}}$
Peeling-Ballooning stability

- At low gas rates, pedestals are at P-B boundary
- At high gas rates, pedestals are stable to P-B modes at higher beta
- All type I ELMy H-modes

Weaker increase of pedestal pressure with power at high D$_2$ gas rates is not consistent with peeling-balloonning model
Varying the plasma neutral content

Neutral D content increases when

- D_2 injection rate is increased \leftrightarrow W control tool
- Divertor configuration is varied from C/C or V/H \rightarrow C/V (pumping efficiency + neutrals recirculation to main chamber)

[Tamain, PSI 2014], [Frassinetti, EPS 2014]

Joffrin, EX/P5-40
Pedestal pressure and neutrals

- **C/C**: good pumping + lower neutral content $\rightarrow n_{e,PED} \downarrow$, $T_{e,i,PED} \uparrow$
- **C/V**: good pumping + higher neutral content $\rightarrow n_{e,PED} \downarrow$, low $T_{e,i,PED}$

<table>
<thead>
<tr>
<th>Major Radius [m]</th>
<th>Height [m]</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.2</td>
<td>-1.2</td>
</tr>
<tr>
<td>2.4</td>
<td>-1.4</td>
</tr>
<tr>
<td>2.6</td>
<td>-1.6</td>
</tr>
<tr>
<td>2.8</td>
<td>-1.8</td>
</tr>
<tr>
<td>3.0</td>
<td>-1.8</td>
</tr>
</tbody>
</table>

Cryopump

de la Luna, EX/P5-29

Joffrin, EX/P5-40
In C/C, $H_{98} \sim 1$ and $\beta_N \sim 1.8$ at 2.5MA

$V/H \rightarrow C/C$

Increase of W_{th} at similar p_{PED} but lower collisionality

[Frassinetti, EPS 2014]
In C/C, $H_{98} \sim 1$ and $\beta_N \sim 1.8$ at 2.5MA

V/H \rightarrow C/C

Increase of W_{th} at similar p_{PED} but lower collisionality

V/H \rightarrow C/V

Low pedestal and core pressure

[Frassinetti, EPS 2014]
At high δ N_2 seeding increases $T_{e,\text{PED}}$

- Increase of $T_{e,\text{ped}}$ is independent of divertor configuration
- Effect on density depends on divertor configuration
- Increase of $T_{e,\text{PED}}$ with N_2 is weaker at low δ
- The underlying physics process is not yet understood

Giroud, EX/P5-25
2.5MA/2.7T, High Triangularity, V/H Configuration

- With increasing D_2 rate, pressure gradient decreases and width increases at constant β_{pol}
- With increasing N_2, temperature pedestal widens and peak density gradient increases

At high gas rates, challenge for KBM based EPED model

[Leyland, Nucl. Fusion, accepted]
Conclusions

• The changeover from JET-C to JET-ILW has forced us to re-optimize pedestal confinement and stability

• What we understand within the P-B framework and EPED model:
 – Stabilizing effects of beta and plasma shaping at low D_2 gas rates

• What we still need to understand in order to advance our predictive capability of the pedestal height:
 – Physics process through which D neutrals degrade $T_{e,PED}$ (inter-ELM transport?...)
 – Physics process through which N_2 impurities increase $T_{e,PED}$
Back-up slides
Distance of operational point to P-B boundary is length of arrow, calculated at fixed pedestal width and increasing $T_{e,PED}$.

SOLID: Experiment
OPEN: P-B Stability Boundary
Gyrokinetic analysis of the pedestal

Local flux tube simulation (GS2) indicates that JET pedestal is stable to KBMs due to high bootstrap current

[JET-C, #79498, 2.5MA /2.7T]

[Saarelma, Nucl. Fusion 2013]
Pedestal prediction

- EPED predicts fully developed pedestal before an ELM at crossing of KBM and P-B stability limits.
- EPED has predicted the pedestal height in several devices within ±20%.

[Snyder et al., NF 2009]
[Snyder et al., NF 2011]
High-n ballooning:
• Inclusion of higher toroidal mode numbers reduces the critical pressure gradient at which ballooning modes become unstable, changing the stability boundary

Diamagnetic stabilization:
• BOUT++ simulations indicate that $\gamma > \omega^*_{\text{max}}/2$ at low n and $\gamma > C * \omega_A$ at high n is more appropriate