First Direct Evidence of Turbulence-Driven Main Ion Flow Triggering the L-H Transition

Lothar Schmitz

for

1University of California Los Angeles, Los Angeles, CA, USA
2Princeton Plasma Physics Laboratory, Princeton, NJ, USA
3University of Wisconsin-Madison, Madison, WI, USA
4University of California San Diego, La Jolla, CA, USA
5General Atomics, San Diego
6NFRI, and World Class Institute, Daejeon, Korea

25th IAEA Fusion Energy Conference
St. Petersburg, Russia
October 13-18, 2014
Investigate L-H transitions at marginal heating power:
- expanded transition timescale
- can exhibit limit cycle oscillations (LCO)

E_r, $E\times B$ shear periodically modulated; edge turbulence periodically quenched:

LCO can reveal the detailed turbulence-flow interaction and trigger physics
• **New:** Evidence that turbulence-driven ion flow triggers the L-Mode – LCO transition

• **Causality:** Turbulence-driven flow quenches turbulence initially; pressure gradient-driven flow locks in H-mode confinement

• **New:** A modified predator-prey model captures essential LCO physics

• **New:** L-mode seed flow shear at L-mode – LCO transition has a density dependence similar to the L-H power threshold
Doppler Backscattering (DBS) Measures Local Density Fluctuation Level and Turbulence Advection Velocity

Fluctuation level vs. $k_θ$ from back-scattered amplitude:

$\bar{n}(k_θ) \sim A(k_θ)$

here: $k_θ \sim 3.5 \text{ cm}^{-1}$, $k_θ\rho_s \sim 0.4-0.6$

ExB velocity from Doppler shift:

$\omega \quad \text{Doppler} = v_{\text{turb}}$

v_{turb}: Turbulence advection

Here, $v_{\text{ph}} << v_{\text{ExB}}$

$\Rightarrow \quad v_{\text{ExB}} \sim \omega_{\text{Doppler}}/2k_i$
Density fluctuations and $E \times B$ velocity measured by DBS with high spatial/temporal resolution

Radial mapping using density profiles from fast Profile Reflectometry (25 μs)

Main ion poloidal/toroidal flow via CER measurements

$E \times B$ flow shearing rate calculated from neighboring DBS channels:

$$\omega_{E \times B} = \frac{v_{E \times B}(R_2) - v_{E \times B}(R_1)}{R_2 - R_1}$$
Evidence of Turbulence-driven Ion Flow; Meso-scale Dipolar Flow Structure
Time Evolution and Radial LCO Structure via Multi-channel Doppler Backscattering

- **L-Mode**: Weak ExB shear layer turbulence peaks at/outside the separatrix
- **LCO phase**: Periodic ExB flow and turbulence suppression (starting at separatrix)
- **H-mode**: Wider and deeper shear layer; turbulence suppression maintained across the edge

Schmitz et al, PRL 108, 2012
Time Evolution and Radial LCO Structure via Multi-channel Doppler Backscattering

• **L-Mode**: Weak ExB shear layer turbulence peaks at/outside the separatrix

• **LCO phase**: Periodic ExB flow and turbulence suppression (starting at separatrix)

• **H-mode**: Wider and deeper shear layer; turbulence suppression maintained across the edge

Schmitz et al, PRL 108, 2012

L. Schmitz/IAEA2014
How is the LCO Triggered? Obtain Turbulence-Driven Ion Flow from the Radial Ion Force Balance

\[
\frac{E_r}{B} = \frac{1}{enB} \nabla p_i - \frac{v_\phi B_\phi}{B} + \frac{v_\theta B_\theta}{B}
\]

- \(E \times B \) velocity measured via DBS
- \(v \times B \) term evaluated from radial momentum balance (subtracting \(\nabla p_i \) term)
How is the LCO Triggered? Evidence for Turbulence-Driven $v_i \times B$ Flow in the Ion Diamagnetic Direction

Radial ion momentum balance:

$$\frac{E_r}{B} = \frac{1}{enB} \nabla p_i - \frac{v_{\theta} B_{\phi}}{B} + \frac{v_{\phi} B_{\theta}}{B}$$

Positive transient in $v_i \times B$ (ion diamagnetic direction) inside the LCFS at the initial turbulence quench

Turbulence suppressed within $\sim 100 \mu s$
Peak negative $E \times B$ flow does not coincide with time of maximum shear (across outer shear layer).

Local meso-scale $E \times B$ shear reversal initiates first turbulence quench:
Peak negative ExB flow does not coincide with time of maximum shear (across outer shear layer)

Local meso-scale ExB shear reversal initiates first turbulence quench:

ExB Shear across outer layer increases; quenches turbulence periodically during successive LCO cycles
Turbulence Drives Main Ion Poloidal Flow

- Main ion flow (measured via main ion CER) lags \bar{n}

- Phase delay of V_θ ($\sim 90^\circ$) is qualitatively consistent with ion flow acceleration via Reynolds stress $\langle \tilde{v} \tilde{v}_r \rangle$:
 \[
 \frac{\langle v \rangle}{t} = \frac{\langle \tilde{v} \tilde{v}_r \rangle}{r} \langle v \rangle
 \]

- BES velocimetry confirms (positive) Reynolds stress gradient in outer layer

He Plasma: Cross-Correlation of \bar{n} and V_θ

* $\Delta t_D \sim 0.15$ ms

* Measured early in the LCO ($t_0 + 1.5$ ms)

\[
\frac{\partial v}{\partial t} = -\frac{\partial v}{\partial r} - m v_q
\]
Poloidal Flow is the Main Contribution to the v_{ExB} Oscillation Early in the LCO

Phase-lock analysis:

Triangular CER waveforms due to limited CER time resolution

$v_\theta \times B$ is the dominant contribution to v_{ExB} early in the LCO
BES Shows Formation of Large Scale Eddies and Eddy Tilting/Break-up in High Shear Regions

• Large eddies grow at expense of smaller eddies

• Break-up/turbulence reduction after large eddies tilt

• $E \times B$ flow reversal near LCFS: IDD turbulence-driven flow at LCFS; EDD turbulence-driven flow further inboard

L. Schmitz/IAEA2014
Causality of shear flow generation
Final Transition to H-mode is due to Increasing Pressure-Gradient Driven Shear; Modulation/Increase of ∇n (∇p_i)

- ∇n is used as proxy for ∇p_i as $L_n < 0.3L_{ti}$
- Density gradient only changes significantly well into the LCO
- Gradual increase and periodic modulation of ∇n during LCO
- Increasing ∇p slows down LCO frequency (increasing shear inhibits turbulence recovery)
Final Transition to H-mode is due to Increasing Pressure-Gradient Driven Shear; Modulation/Increase of $\nabla n, \nabla p_i$

• Expanded time scale: $\nabla n (\nabla p)$ increase after each fluctuation quench
Early in the LCO, ∇p_i lags $\omega_{E \times B}$:

$E \times B$ Shear is not caused by the pressure gradient.

Later in the LCO, ∇p_i leads $\omega_{E \times B}$:

Pressure-gradient driven shear is dominant.

Correlation delay Between $\omega_{E \times B}$ and ∇p_i
A modified Predator-prey Model Captures Essential LCO Physics
Two Coupled Feedback Cycles: Synergy of Turbulence-Driven Flow and Pressure-Gradient-Driven Flow

- Total ExB flow includes pressure-gradient-driven equilibrium flow
- Pressure gradient is modulated via the periodic change in turbulence level and transport: two interacting feedback cycles
Predator-Prey Model Predicts LCO with Opposing Turbulence-Driven and ∇p-Driven (v_{Dia}) Flow

Modeling results*, including:

- neoclassical poloidal ion velocity (no toroidal flow)
- shearing by turbulence-driven and ∇p driven $E \times B$ flow
- pressure profile evolution (radial transport)

*based on Miki, Diamond, PoP 2012

Total $E \times B$ flow (includes v_{θ}, v_{Dia}, and turbulence-driven flow): ($E_r, \nabla h$) phasing shifts from 90° closer to 0° as diamagnetic shear becomes dominant
Predator-Prey Model Predicts LCO with Opposing Turbulence-Driven and ∇p-Driven (v_{Dia}) Flow

Modeling results*, including:
- neoclassical poloidal ion velocity (no toroidal flow)
- shearing by turbulence-driven and ∇p driven $E \times B$ flow
- pressure profile evolution (radial transport)

*based on Miki, Diamond, PoP 2012

Total $E \times B$ flow (includes v_{θ}, v_{Dia}, and turbulence-driven flow): (E_r, \bar{n}) phasing shifts from 90° closer to 0° as diamagnetic shear becomes dominant
Predator-prey Model Qualitatively Reproduces the Measured Phase Shift between $\bar{\eta}$ and v_{ExB}

Early LCO ($t_0 + 1.5\text{ms}$):
- Experiment: $\Delta\phi \approx 70-90^\circ$
- Model: $\Delta\phi \approx 50-70^\circ$

Late LCO ($t_H - 1.5\text{ms}$):
- Experiment: $\Delta\phi \approx 20-30^\circ$
- Model: $\Delta\phi \approx 10-20^\circ$

Quantitative differences due to variations of Zonal- and mean turbulence-driven ion flow
E × B and v × B seed flow shear at the L-mode-LCO Transition
Importance of Seed Flow Shear: L-Mode $E \times B$ and $v \times B$ Flow Shear (and P_{th}) Increase at Low and High Density

- Reynolds work P_{Re} depends on Reynolds stress and seed shear flow:
 \[P_{Re} = \langle \tilde{v}_r \tilde{v}_\theta \rangle \frac{\partial \langle v_\theta \rangle}{\partial r} \]

- Total $E \times B$ shearing rate and $v \times B$ shear show a minimum at intermediate density (similar to P_{th})

- L-mode diamagnetic seed flow shearing rate ω_{Dia} does not reflect the P_{th} density dependence
Conclusions/Physical Picture

- Strong evidence that turbulence-driven ion flow triggers LCO; evidence of dipolar meso-scale flow structure
- Causality of shear flow generation: Pressure-gradient-driven shear increases only well after the initial fluctuation quench, and locks in the final transition to H-mode
- 0-D /1-D predator-prey models captures synergy of turbulence-driven and pressure-gradient driven flow and reproduces essential experimental LCO properties
- Connection to power threshold: Both total $E \times B$ shear and $v \times B$ velocity shear increase at very low and at high plasma density (qualitatively similar to P_{th} scaling)
Positive Flow Transients in Outer Shear Layer Suppress \tilde{n}

- $E \times B$ Shearing rates peak in the outer shear layer where turbulence level is high.
- Positive flow transients suppress turbulence.
Negative Flow Transients Occur after Turbulence Suppression

- Negative $E \times B$ transients reflect turbulent-driven flow early in the LCO.
- Pressure-gradient-driven flow only changes significantly well into the LCO.
Predator-Prey Model Predicts LCO with Opposing Turbulence-Driven and ∇p-driven ($v_{D\text{ia}}$) Flow

0-D Predator-Prey modeling results*, including:

- neoclassical poloidal ion velocity (no toroidal flow)
- shearing by turbulence-driven and mean flows
- pressure profile evolution
- radial transport

Turbulence-driven Zonal flow v_{ZF} lags density fluctuation level \tilde{n} by 90°

Equilibrium flow is out of phase (180°) with \tilde{n} (both consistent with observed limit cycle phasing)
0-D Predator-Prey modeling results*, including:

- neoclassical poloidal ion velocity (no toroidal flow)
- shearing by turbulence-driven and mean flows
- pressure profile evolution
- radial transport

Predator-Prey Model Predicts LCO with Opposing Turbulence-Driven and \(v_{ZF} \)-Driven (\(v_{Di} \)) Flow

Turbulence-driven flow \(v_{ZF} \) lags \(\bar{n} \) by 90° (qualitatively consistent with experiment)

Poloidal Ion Flow lags \(\bar{n} \) by 10-30° consistent with observed limit cycle phasing)
Predator-Prey Model Predicts LCO with Opposing Turbulence-Driven and v_{ZF}-Driven (vDia-) Flow

0-D Predator-Prey modeling results*, including:

- neoclassical poloidal ion velocity (no toroidal flow)
- shearing by turbulence-driven and mean flows
- pressure profile evolution
- radial transport

Turbulence-driven flow v_{ZF} lags density fluctuation level \tilde{n} by 90° (consistent with observed limit cycle phasing)

* L. Schmitz/EU-US TTF 2014
Flow Layer Propagates Radially Inwards

- Positive transients in inner shear layer delayed;
- Consistent with radial inward propagation of LCO $E \times B$ flow*
- Mesoscale radial structure:
 $\gamma_{i} < L_{E \times B} < L_{p}$

*L. Schmitz et al., PRL 2012
Limit Cycle Directions (\(\tilde{n}, v_{ExB}\) Phase Relation) are Consistent with Meso-scale Turbulence-Driven Flow

Opposite Limit cycle directions are observed in outer/inner shear layer

\(\tilde{n}, v_{ExB}\) phase relationship is consistent with observed radial \(E \times B\) flow propagation

L. Schmitz et al.,
Predator-Prey Model Predicts LCO with Opposing Turbulence-Driven and ∇p-Driven (v_{Dia}) Flow
Evidence of Turbulence-Driven Poloidal Ion Flow from Main Ion CER and DBS

Poloidal flow acceleration via turbulence-generated Reynolds stress \(\langle \vec{v}_\theta \vec{v}_r \rangle \):

\[
\frac{\partial \langle \vec{v}_\theta \rangle}{\partial t} = - \frac{\partial}{\partial r} \langle \vec{v}_\theta \vec{v}_r \rangle - \mu \langle \vec{v}_\theta \rangle
\]

Main ion flow \(\vec{v} \) lags the density fluctuation level \(\vec{\eta} \)

\(E \times B \) velocity approximately in phase with \(\vec{v} \):

Driven Poloidal ion flow is main contribution to \(\vec{v}_{E \times B} \)

He Plasma: Cross-Correlation of \(\vec{\eta} \) and \(\vec{v} \)

\(\Delta t_D \approx 50 \mu s \)

Measured early in the LCO
Poloidal main ion flow v_θ (blue, green) lags the density fluctuation level \bar{n}

The $E \times B$ flow is in phase with v_θ (expected if the E_r modulation results from v_θ)

Less clear correlation of \bar{n} with toroidal velocity v_ϕ in the early LCO

He Plasma: Cross-Correlation of \bar{n} and $v_{E \times B}$ with v_θ

$C(v_{E \times B}, v_\theta)$
$t_0 + 1.5\text{ ms}$

$C(\bar{n}, v_\theta)$
t_0 (2569 ms)

$C(\bar{n}, v_\theta)$
to $+1.5\text{ ms}$

$R=R_s-0.8 \text{ cm}$
Toroidal Flow Modulation is Out of Phase with ExB Velocity in Outer Shear Layer

Toroidal velocity is positive (co-current); increases locally towards LCFS (orbit-loss effect?)

Shown is the electric field component due to v_{ϕ}

Weak toroidal velocity modulation observed in Inner Shear Layer
Miki-Diamond Model* (1-D, coupled with radial transport model)

\[
\frac{\partial}{\partial t} \tilde{I} = \gamma \tilde{I} - c_1 \tilde{I}^2 - \alpha_0 E_0 - \alpha_v E_v
\]

\[
\frac{\partial}{\partial t} E_0 = \frac{\alpha_0 E_0 \tilde{I}}{1 + \zeta_0 E_v} - \gamma_{damp} E_0
\]

\[
\frac{\partial}{\partial t} P_i' = Q - c_2 \tilde{I} P_i' - c_3 \tilde{I}
\]

Turbulence Evolution

Turbulence-driven shear flow energy

Pressure gradient evolution

Mean Shear Flow

Mean poloidal flow (Reynolds stress + neoclassical flow)

* Miki and Diamond, PoP 2012
Motivation

- The presently used empirical L-H power threshold scaling does not reflect important parameters, or the observed non-monotonic dependency of \(P_{\text{th}} \) on density:

\[
P_{\text{th}}(\text{MW}) = 0.049 B_\Phi^{0.8} n_e^{0.72} S^{0.94} \quad (2008 \text{ multi-machine scaling})
\]

- Predicting the L-H transition power threshold in ITER requires a physics-based L-H transition model:
 - Link trigger physics/microscopic flow/turbulence dynamics to the macroscopic power threshold scaling
 - Extract critical seed shear flow/ critical turbulence-driven shear flow and determine their role in the \(P_{\text{th}} \) scaling
Meso-Scale Dipole Structure of Turbulence-Driven Flow: Alternating Transients in Outer / Inner Shear Layer

$E \times B$ Shearing rates peak in the outer shear layer (pos. flow: magenta arrows) where turbulence level is high.

Radial profile consistent with radial inward propagation of LCO $E \times B$ flow*

*L. Schmitz et al., PRL 2012