A Study of Core Thomson Scattering Measurements in ITER Using a Multi-Laser Approach

G.S. Kurskiev1, P.A. Sdvizhenskii2, P. Andrew3, M. Bassan3, A.N. Bazhenov1, I.M. Bukreev1, P.V. Chernakov1, M.M. Kochergin1, A.B. Kukushkin2,4, S.V. Masyukevich1, E.E. Mukhin1, A.G. Razdobarin1, D.S. Samsonov1, V.V. Semenov1, S.Yu. Tolstyakov1

1Ioffe Physical Technical Institute, 194021, St. Petersburg, Russian Federation
2NRC "Kurchatov Institute", Moscow, 123182, Russian Federation
3ITER Organization, Route de Vinon-sur-Verdon, CS 90 046, 13067 St. Paul Lez Durance Cedex, France
4National Research Nuclear University MEPhI, Moscow, 115409, Russia

(i) The problem:

to measure T_e as high as 40 keV using Thomson Scattering in the reactor core both for Maxwellian and non-Maxwellian case of electron velocity distribution function especially in the case of unknown system spectral responsivity.

(ii) The suggested solutions:

to use IR probing laser 1320 nm additionally to convenient NIR laser 1064 nm to improve measurement accuracy for $T_e \sim 40$keV;

to use specific algorithm for TS data processing in case of non-Maxwellian eVDF;

to use multi-laser approach, that suggests plasma probing with 3 lasers – 946 nm/1064 nm/1320 nm simultaneously in the case of unknown system spectral sensitivity.

(iii) Next steps – test multi-laser approach and designed data procession technique in real experiment on existing fusion device.