Developing Physics Basis for the Radiative Snowflake Divertor at DIII-D

by
V.A. Soukhanovskii1,

with S.L. Allen1, M.E. Fenstermacher1,
C.J. Lasnier1, M.A. Makowski1,
A.G. McLean1, W.H. Meyer1,
D.D. Ryutov1, E. Kolemen2,
R.J. Groebner3, A.W. Hyatt3,
A.W. Leonard3, T.H. Osborne3,
T.W. Petrie3, J. Watkins4,

1Lawrence Livermore National Laboratory
2Princeton University
3General Atomics,
4Sandia National Laboratory

Presented at the
25th IAEA Fusion Energy Conference
Saint Petersburg, Russia

October 13–18, 2014
Snowflake Divertor Configuration is Studied in DIII-D as a Tokamak Divertor Power Exhaust Concept

\[q_{\text{peak}} = \frac{P_{\text{div}}}{A_{\text{wet}}} = \frac{P_{\text{SOL}}(1 - f_{\text{rad}}) f_{\text{geo}}}{2\pi R_{SP} f_{\exp} \lambda_q} \]

- **Divertor power exhaust challenge**
 - Steady-state heat flux
 - Technological limit \(q_{\text{peak}} \leq 5-15 \text{ MW/m}^2 \)
 - DEMO: Unmitigated, \(q_{\text{peak}} \leq 150 \text{ MW/m}^2 \)
 - ELM energy, target peak temperature
 - Melting limit 0.1-0.5 MJ/m^2
 - DEMO: Unmitigated, \(\geq 10 \text{ MJ/m}^2 \)
- **Snowflake divertor with 2nd-order null**
 - \(\nabla B_p \sim 0 \Rightarrow \text{Large region of low } B_p \)
 - Very large \(A_{\text{wet}} \) possibility
- **Experiments in TCV, NSTX, EAST, DIII-D**

Large Region of Low B_p Around Second-order Null in Snowflake Divertor is Predicted to Modify Power Exhaust

- **Geometry properties**
 - Criteria: $d_{xx} \leq a \left(\frac{\lambda_q}{a} \right)^{1/3}$
 - Higher edge magnetic shear
 - Larger plasma wetted-area $A_{wet} (f_{exp})$
 - Larger parallel connection length $L_{||}$
 - Larger effective divertor volume V_{div}

- **Transport properties**
 - Criteria: $d_{xx} \leq D^* a \left(\frac{a \beta_{pm}}{R} \right)^{1/3}$
 - High convection zone with radius D^*
 - Power sharing over four strike points
 - Enhanced radial transport (larger λ_q)

"Laboratory for divertor physics"
Outline of talk

• Comparisons between **snowflake** and standard divertor encouraging
 – Compatibility with good core and pedestal performance
 – Confirmed geometry properties A_{wet} and L_{II}
 – Initial confirmation of transport properties

• Broader divertor radiation distribution
• Reduced inter-ELM peak heat flux q_{peak}
• Reduced ELM energy, T_{peak} and q_{peak}

Control of steady-state snowflake configurations in DIII-D with existing coils
• E. Kolemen et.al., next talk
Increased Plasma-wetted Area Leads to q_{peak} Reduction In Snowflake Divertor

- **Snowflake with $d_{\text{xx}} < 10$ cm**
- **Core plasma unaffected**
 - 5 MW NBI H-mode
 - Stored energy and density constant
- **Divertor power balance unaffected**
- **In outer divertor, q_{peak} reduced by 30%**

\[
A_{\text{wet}} = 2\pi R f_{\text{exp}} \lambda_{q_{\|}}
\]

\[
f_{\text{exp}} = \frac{(B_p/B_t)_{\text{Midplane}}}{(B_p/B_t)_{\text{Divertor}}}
\]
Reduction in Snowflake Divertor Partly Due to Increased A_{wet} and $L_{\|}$

- Flux expansion increased $\sim 20\%$
 - Depends on configuration, can be up to $X3$
- $L_{\|}$ increased by 20-60\% over SOL width
- Divertor heat flux reduced $\sim 30\%$
- Parallel heat flux reduced $\sim 20\%$
Convective Plasma Mixing Driven by Null-region Instabilities May Modify Particle and Heat Transport

- **Flute-like, ballooning and electrostatic modes are predicted in the low B_p region**
 - $\beta_p = \frac{P_k}{P_m} = 8\pi \frac{P_k}{B_p^2} \gg 1$
 - Loss of poloidal equilibrium
 - Fast convective plasma redistribution
 - Especially efficient during ELMs when P_k is large

- **Estimated size of convective zone**
 - Standard: 1cm
 - Snowflake: 6-8 cm

- **Divertor null-region β_p measured by divertor Thomson Scattering**
 - In snowflake, broad region of higher $\beta_p \gg 1$
 - Higher X10 during ELMs

Heat and Particle Fluxes Shared Among Strike Points in Snowflake Divertor

\[\frac{q_{SP3}}{q_{SP1}} < 0.5 \]
\[\frac{P_{SP3}}{P_{SP1}} < 0.3 \]

Sharing fraction maximized at low \(d_{XX} \)
Broader q_{\parallel} Profiles in Snowflake Divertor May Imply Increased Radial Transport

- **Fit q_{\parallel} profile with Gaussian (S) and Exp. (λ_{SOL}) functions** (Eich PRL 107 (2011) 215001)
- **Increased λ_q may imply increased transport**
 - Increased radial spreading due to L_{\parallel}
 - SOL transport affected by null-region mixing
 - Enhanced dissipation may also play role
Divertor Radiation More Broadly Distributed in Snowflake for Radiative Divertor, q_{peak} Reduced by $x5$

- Detached radiative divertor produced by D_2 injection with intrinsic carbon radiation
- In radiative snowflake nearly complete power detachment at $P_{\text{SOL}} \sim 3$ MW

$P_{\text{SOL}} = 3-4$ MW

R_{div} (m) vs. Divertor heat flux (MW/m2)

$P_{\text{SOL}} = 3-4$ MW
SF Divertor Weakly Affects Pedestal Magnetic and Kinetic Characteristics, Peeling-ballooning Stability in DIII-D

- At lower n_e, H-mode performance unchanged with snowflake divertor
 - Similar P_{ped}, W_{ped}
 - $H98(y,2) \sim 1.0$-1.2, $\beta_N \sim 2$
 - Plasma profiles only weakly affected

- Peeling-ballooning stability unaffected
 - Shear_{95}, q_{95} increased by up to 30%
 - Medium-size type I ELMs
 - ELM frequency weakly reduced
 - ELM size weakly reduced
ELM Power Loss Scales with Collisionality, Reduced in H-modes with Snowflake Divertor

- Both ΔW_{ELM} and $\Delta W_{\text{ELM}}/W_{\text{ped}}$ weakly reduced
- Mostly for $\Delta W_{\text{ELM}}/W_{\text{ped}} < 0.10$

- Increased collisionality with snowflake $\nu_{\text{ped}}^* = \pi Q_{95}/\lambda_{ee}$
Peak ELM Target Temperature and ELM Heat Flux Reduced in Snowflake Divertor

In snowflake divertor
- $\Delta T_{\text{surf}} \sim E_{\text{ELM}}/(A_{\text{wet}} \tau_{\text{ELM}})^{1/2}$
- Increased $\tau_{\text{ELM}} = L_{\text{II}}/C_{s,\text{ped}}$
- Weakly reduced E_{ELM}
- $A_{\text{wet}}^{\text{ELM}}$ similar

Type I ELM power deposition correlates with τ_{ELM}
- In radiative snowflake, ELM peak heat flux reduced by 50-75 %
- Similar effect in NSTX

S. L. Allen et. al., IAEA 2012
Developing the Snowflake Divertor Physics Basis For High-power Density Tokamaks

• SF divertor configurations compatible with high H-mode confinement and high pressure pedestal

• Snowflake geometry may offer multiple benefits for inter-ELM and ELM heat flux mitigation
 – Geometry enables divertor inter-ELM heat flux spreading over larger plasma-wetted area, multiple strike points
 – Broader parallel heat fluxes may imply increased radial transport
 – ELM divertor peak target temperature and heat flux reduction, especially in radiative snowflake configurations