Configuration Studies for an ST-based Fusion Nuclear Science Facility

IAEA Fusion Energy Conference, Oct. 13-18, 2014, St. Petersburg, Russia

J. Menard1, M. Boyer1, T. Brown1, J. Canik2, B. Covelle3, C. D’Angelo4, A. Davis4, L. El-Guebaly4, S. Gerhardt4, S. Kaye4, C. Kessel4, M. Kotschenreuther4, S. Mahajan4, R. Maing1, E. Marriott4, L. Mynsberge4, C. Neumeyer4, M. Ono5, R. Raman5, S. Sabbagh6, V. Soukhanovskii7, P. Valanju7, R. Woolley7, and A. Zolfaghari8

1Princeton Physics Laboratory, Princeton, NJ, USA
2Oak Ridge National Laboratory, Oak Ridge, TN, USA
3University of Texas, Austin, TX, USA
4University of Wisconsin, Madison, WI, USA
5University of Washington, Seattle, WA, USA
6Columbia University, New York, NY, USA
7Lawrence Livermore National Laboratory, Livermore, CA, USA
8University of California, Berkeley, CA, USA

Overview

• Recent U.S. studies for ST-FNSF have focused on assessing achievable missions versus device size
• Possible missions:
 – Electricity break-even
 – Motivated 2010-12 analysis of R=2.2m ST Pilot Plant
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
 – Motivates present (2013-14) analysis of R=1m, 1.7m ST FNSF devices to address key questions:
 – How large must ST device be to achieve TBR > 1?
 – How much externally supplied T would be needed for smaller ST?
 – What are device and component lifetime?
• Fusion-relevant neutron wall loading and fluence
• STs studied here access 1MW/m2, 6MWy/m2 (surfacing values)
• PF coil set identified that supports combined Super-X + snowflake divertor for range of equilibria

PF coil set identified that supports combined Super-X + snowflake divertor for range of equilibria

Components:
- All equilibrium PF coils outside vacuum vessel
- Increased strike-point radius reduces B, q
- Strike-point PFCs also shielded by blankets
- 2nd X-point/snowflake increases SOL line-length
- PF coil set supports wide range of q = 0.4 – 0.8
- Breaching and strike points change with q
- 3D strike point R, controllable strike point angle of incidence (0-14°)
- Diverter coils in TF coil ends for equilibrium, high q
- Breeding in CS ends important for maximizing TBR

R=1.7m configuration with Super-X divertor

Overview

• Recent U.S. studies for ST-FNSF have focused on assessing achievable missions versus device size
• Possible missions:
 – Electricity break-even
 – Motivated 2010-12 analysis of R=2.2m ST Pilot Plant
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
 – Motivates present (2013-14) analysis of R=1m, 1.7m ST FNSF devices to address key questions:
 – How large must ST device be to achieve TBR > 1?
 – How much externally supplied T would be needed for smaller ST?
 – What are device and component lifetime?
• Fusion-relevant neutron wall loading and fluence
• STs studied here access 1MW/m2, 6MWy/m2 (surfacing values)
• PF coil set identified that supports combined Super-X + snowflake divertor for range of equilibria

Two sizes (R=1.7m, 1m) assessed for shielding, TBR

Parameter:
- Major Radius 1.68m 1.0m
- Minor Radius 1.7m 0.8m
- Fusion Power 1632MW 623MW
- Wall loading (avg) 1MW/m2 1MW/m2
- TF coils 12 10
- TBM ports 4 4
- MTM ports 1 1
- NBI ports 3 3
- Plant Lifetime >30 years
- Availability 10-50%
- Neutron source distribution

Mapping of dpa and FW/blanket lifetime (R=1.7 m Device)

0.5 MeV NNBI favorable for heating and current drive (CR) for R=1.7m ST-FNSF

Two sizes (R=1.7m, 1m) assessed for shielding, TBR

Parameter:
- Major Radius 1.68m 1.0m
- Minor Radius 1.7m 0.8m
- Fusion Power 1632MW 623MW
- Wall loading (avg) 1MW/m2 1MW/m2
- TF coils 12 10
- TBM ports 4 4
- MTM ports 1 1
- NBI ports 3 3
- Plant Lifetime >30 years
- Availability 10-50%
- Neutron source distribution

Impact of TBM, MTB, NBI ports on TBR

No partial or penetrations, breeding blanket

Approx. ΔTBR per port:
- TBM: -0.25%
- MTB: -2.0%
- NBI: -0.75%

TBR contributions by blanket region

Breeding at CS ends important: ΔTBR = +0.07

Options to increase TBR > 1

- Add to PF coil shield a thin seeding blanket (ΔTBR = +13%)
- Smaller opening to divertor to reduce neutron backscattering
- Uniform OB blanket (1m thick; nothing thinner)
- Reduce cooling channels and FCI's within blanket (used thermal noise analysis to cutoffs)
- Thicker IB VV with breeding

Potential for TBR > 1 at R=1.7m

R2 = 1m ST-FNSF achieves TBR = 0.88

Summary: R = 1m and 1.7m STs with R2 = 1MW/m2 and Dn2 = 1.2 assessed for FNS mission

- Ex-vessel PF coil set identified to support range of equilibria and Super-X/snowflake divertor to mitigate high heat flux
- 0.5MeV NNBI optimal for heating & current drive for R=1.7m
- Vertical maintenance approach, NBI & test-cell layouts identified
- Shielding adequate for MgO insulated inboard Cu PF coils
- Outboard PF coils (heated outboard blanket) can be superconducting
- Calculated full 3D TBR: reduction from TBM, MTB, NBI
- Threshold major radius for TBR = 1 is R2 = 1.7m
- R=1m TBR = 0.88 = 0.4-0.55kg of FFPPY → $12.5MM/FPPY
- R=1m device will have lower electricity and capital cost future work could assess size/cost trade-offs in more detail

ST-FNSF shielding and TBR analyzed with sophisticated 3-D neutronics codes

• CAD coupled with MCNP using UW DAGMC code
• Fully accurate representation of entire torus
• No approximation/simplification involved at any step:
 – All neutrons considered
 – 3-D neutronics codes: MCNP + DAGMC
 – Effects of all shielding materials modeled in detail, including:
 – FW, side, top/bottom, and back walls, cooling channels, SIC FCI
 – All walls accurately modeled
 – Cooling channels, FCI's, etc.
 – All OB blanket modeled
• Supporting Physics
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Supporting Systems
 – Tritium production
 – Tritium consumption
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Nuclear Science
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Supporting Physics
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Supporting Systems
 – Tritium production
 – Tritium consumption
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Nuclear Science
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)

Mapping of dpa and FW/blanket lifetime (R=1.7 m Device)

0.0004
0.0064
0.004
0.0064
0.0004

Breeding at CS ends important: ΔTBR = +0.07

Options to increase TBR > 1

- Add to PF coil shield a thin seeding blanket (ΔTBR = +13%)
- Smaller opening to divertor to reduce neutron backscattering
- Uniform OB blanket (1m thick; nothing thinner)
- Reduce cooling channels and FCI's within blanket (used thermal noise analysis to cutoffs)
- Thicker IB VV with breeding

Potential for TBR > 1 at R=1.7m

R2 = 1m ST-FNSF achieves TBR = 0.88

Summary: R = 1m and 1.7m STs with R2 = 1MW/m2 and Dn2 = 1.2 assessed for FNS mission

- Ex-vessel PF coil set identified to support range of equilibria and Super-X/snowflake divertor to mitigate high heat flux
- 0.5MeV NNBI optimal for heating & current drive for R=1.7m
- Vertical maintenance approach, NBI & test-cell layouts identified
- Shielding adequate for MgO insulated inboard Cu PF coils
- Outboard PF coils (heated outboard blanket) can be superconducting
- Calculated full 3D TBR: reduction from TBM, MTB, NBI
- Threshold major radius for TBR = 1 is R2 = 1.7m
- R=1m TBR = 0.88 = 0.4-0.55kg of FFPPY → $12.5MM/FPPY
- R=1m device will have lower electricity and capital cost future work could assess size/cost trade-offs in more detail

ST-FNSF shielding and TBR analyzed with sophisticated 3-D neutronics codes

• CAD coupled with MCNP using UW DAGMC code
• Fully accurate representation of entire torus
• No approximation/simplification involved at any step:
 – All neutrons considered
 – 3-D neutronics codes: MCNP + DAGMC
 – Effects of all shielding materials modeled in detail, including:
 – FW, side, top/bottom, and back walls, cooling channels, SIC FCI
 – All walls accurately modeled
 – Cooling channels, FCI's, etc.
 – All OB blanket modeled
• Supporting Physics
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Supporting Systems
 – Tritium production
 – Tritium consumption
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Nuclear Science
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Supporting Physics
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Supporting Systems
 – Tritium production
 – Tritium consumption
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)
• Nuclear Science
 – Tritium breeding
 – Electricity break-even
 – Tritium self-sufficiency (trium breeding ratio TBR > 1)