
L→H Transition Criterion:
A 3D Nonlinear Simulation Study

G.Y. Park¹, S.S. Kim¹, T. Rhee¹, H.G. Jhang¹, P.H. Diamond¹,², I. Cziegler², G. Tynan², and X.Q. Xu³

¹National Fusion Research Institute, Korea
²CMTFO and CASS, UCSD, USA
³Lawrence Livermore National Laboratory, USA
Introduction

- L-H transition phenomenology
 - Sudden bifurcation to high confinement (H-mode)
 - Studied for ~32 years
 - Theory perspective-based on transport bifurcation and profile self-organization via predator-prey dynamics
 - Main paradigm: ExB flow shear (ω_{ExB}) suppression of the turbulence
 - $\omega_{\text{ExB}} > \gamma_{\text{lin}} \rightarrow$ turbulence suppressed and H-mode sustained
 - Unknown
 - Trigger mechanism
 - Transition criterion based on microphysics (need predictive capability)

- Main questions
 - What triggers the transition?
 - How the transition evolves?
 - How predict transition, and power threshold?

To be explained in the present talk
H-mode and L-H transition

- H-mode: enhanced plasma confinement with edge transport barrier (ETB)

- H-mode history/phenomenology (1982-2014)
 - Wagner (1982): first discovered at ASDEX-U
 - Er shear layer at edge, fluctuation decrease, existence of power threshold (P_{th})
 - Predator-Prey paradigm [Diamond, PRL, 1994; Kim & Diamond, PRL 2003]
 - Zonal flow (ZF): predator, turbulence: prey, mean flow: another predator
 - ZF triggers the transition, while mean flow sustains the barrier

- Why H-mode is important for fusion?
 - Practical reason: can reduce reactor size
 - H-mode driven high pedestal height
 → high fusion performance
Experimental evidence of a role of turbulence-driven (ZF) flow in triggering L-H transition

- Tynan (2013) and Manz (2012)
 - Normalized Reynolds power
 \[R_T = \frac{\langle \tilde{v}_r \tilde{v}_\theta \rangle \langle V_{ZF}^{LE} \rangle}{\gamma_{eff} \langle \tilde{v}_1^2 \rangle} \]
 meaning a ratio of kinetic energy transfer from turbulence into ZF to the turbulence input power
 - Turbulence collapse condition
 \[R_T > 1 \]
 - Experimental results show that L-H transition occurs when \(R_T > 1 \)
- Yan (2014) reported a similar finding at DIII-D
Main results

- 3D flux-driven simulation of edge transport barrier (ETB) formation shows that

1. ETB forms once input power exceeds a threshold value
 - Steep pressure pedestal, deep Er well appear when $P_{in} > P_{th}$
 - Q versus $-\nabla P$ curve shows a feature of first-order phase transition

2. ETB transition is triggered by turbulence-driven flow shear
 - $R_T > 1$: criterion for the trigger of the transition
 - Burst of the turbulence-driven flow shear appears just prior to the transition point

3. Time sequence of the transition is clear
 1) Peaking of the normalized Reynolds power ($R_T > 1$):
 2) Turbulence suppressed and pressure gradients increased
 3) Mean flow shear ($\langle V_E \rangle \text{ from } \nabla P$) rises: **sustain H-mode**

→ Microphysics (R_T) may govern L→H transition!
3D model using BOUT++

- Electrostatic model with resistive ballooning (RBM) turbulence
 - Two field (vorticity, pressure) reduced MHD equations (constant density)
 - Flux driven, self-consistently evolving pressure profile

- Vorticity (U)
 \[\frac{\partial U}{\partial t} = -\vec{V}_E \cdot \nabla U - B^2 \nabla \parallel J \parallel B + \vec{b} \times \vec{k} \cdot \nabla P + \mu \nabla^2 U - \mu_{\text{neo}} (U_{0,0} - U_P), \]

- Pressure (P)
 \[\frac{\partial P}{\partial t} = -\vec{V}_E \cdot \nabla P + \chi \nabla^2 P + \chi_{\text{neo}} \nabla^2 P + S_0(r) - S_1 P_{0,0} \]

 - Overall results are independent of the particular source and sink profiles
 - For transport coefficients, we use \(\chi_\parallel = 0.1, \chi_{\text{neo}} = \mu_\perp = 3.0 \times 10^{-6} \)

Neoclassical poloidal flow damping accounting for self-consistent flow

Since \(v_{i,*} \sim n T_i^{-2} \sim P^{-2} \), \(k_{\text{neo}} (v_{i,*}) \rightarrow k_{\text{neo}} (P) \), \(\mu_{\text{neo}} (v_{i,*}) \rightarrow \mu_{\text{neo}} (P) \)

Heat source \(\rightarrow \) models SOL loss
Edge transport barrier (ETB) forms when $P_{\text{in}} > P_{\text{th}}$

- ETB forms at $x \sim 0.95$ for $P_{\text{in}} > P_{\text{th}}$ [Park, H-mode Workshop, 2013]
- Steep pressure pedestal
- Deep E_r well
- Discontinuity in slope of Q versus $-\nabla P$ graph
 - A feature of first-order phase transition
- Similar simulation result of ETB formation has been reported [Chone, PoP, 2014]
Power ramp up simulation shows the turbulence collapse at $t=t_R$ via an intermediate phase

- Limit-cycle oscillation (LCO) appears prior to the transition
- Turbulence is continuously growing and peaks just before the transition
- ExB flow shear changes abruptly near the transition (yellow shaded area)
$R_T > 1$ for the trigger of the transition at $t=t_R$: fluctuation energy \rightarrow flow $(m=n=0)$ energy

- Turbulence collapse condition ($\frac{\partial \tilde{V}^2}{\partial t} < 0$) $\Rightarrow R_T \geq 1$
- $R_T > 1$ means the conversion of fluctuation energy into flow energy faster than turbulence energy increase

Reynolds work (simulation)

- Tynan (2013)

D_α drop

R_T at edge
Simulation shows a similar sequence of the transition to that observed on C-Mod (Cziegler, 2014)

- $R_T > 1$ at $t = t_R$ → an increase of pressure gradient.
 - $R_T > 1$ at $t = t_R$ triggers the transition
 - Turbulence collapse → an increase of ∇P
Microscopic time sequence of the transition: ∇P, ExB flow shear (ω_{ExB}), and linear growth rate (γ_{lin})

- $R_T > 1$ causes the surge of the turbulence-driven flow shear at $t=t_R$
- Increase of pressure gradient precedes mean flow shear development
- Positive feedback between ∇P and ω_{ExB} begins at $t=t_P$
- Mean shear criterion ($\omega_{\text{ExB}} > \gamma_{\text{lin}}$) is satisfied later, at $t=t_C \rightarrow$ H-mode sustained afterward

\[\tau_A \]
Preliminary electromagnetic three-field results

- Simulation of ETB formation using three-field model
 - Two-field model + Ohm’s law for perturbed vector potential (ψ)
 \[\frac{\partial \psi}{\partial t} = -\nabla_{\parallel} \Phi + \frac{1}{S} \nabla_{\perp}^2 \psi, \]
 - Profiles of μ_{neo} and k_{neo} are fixed in time in this simulation
 - ETB occurs for $P_{\text{in}} = 2.0$ as seen in right figures
 - Suggests that the transition physics as found in electrostatic case may also apply for the electromagnetic case (Work is in progress)
Conclusions and discussions

- First 3D turbulence simulation to explicitly show
 - ETB formation for $P_{in} > P_{th}$
 - The criteria $R_T > 1$ is the trigger of the $L \rightarrow H$ transition
 - $\text{Microphysics (} R_T \text{) may govern } L \rightarrow H \text{ transition process}$
 - Detailed time sequence of the $L-H$ transition
 - $R_T > 1 \rightarrow$ the surge of the turbulence-driven flow shear
 - An increase of pressure gradient \rightarrow mean flow shear development via positive feedback
 - $\omega_{\text{ExB}} > \gamma_{\text{lin}} \rightarrow$ steady H-mode sustained

- Future works
 - Microscopic parameter trends in R_T and their relation to $L \rightarrow H$ transition power threshold scaling
 - Formation of sudden deep (in time) R_T just prior to the transition
 - $H \rightarrow L$ back transition and hysteresis
 - Electromagnetic case

Microphysics (R_T) may govern $L \rightarrow H$ transition process