Five Collisional Operators are employed and compared for the GAM:
(a) Krook operator with number conservation only;
(b) Krook operator with number and energy conservation;
(c) Lorentz operator with a constant collision rate;
(d) Lorentz operator with an energy-dependent collision rate;
(e) Hirshman-Sigmar-Clarke collision operator

- **Collisional damping**
 - non-monotonic behavior for all
 - overestimated damping for (a)
 - overestimated at low collisionality but underestimated at high collisionality for (c)
 - close results for (b), (d) and (e)

- **GAM frequency**
 \[
 \sqrt{\frac{4}{7} + \tau \frac{v_t}{R}} \quad \text{(collisionless)}
 \]
 \[
 \sqrt{1 + \tau \frac{v_t}{R}} \quad \text{for (a)}
 \]
 \[
 \sqrt{\frac{5}{3} + \tau \frac{v_t}{R}} \quad \text{for others}
 \]

- Energy conservation of the collision operator is important for GAM as well as number conservation