Feedback of a neoclassical tearing mode on drift wave - Zonal Flow turbulence

M. Leconte1, PH. Diamond1,2 and Dong-Keun Oh1

1WCI Center for Fusion Theory
NFRI, Korea

2CMTFO and CASS
UCSD, USA

Acknowledgements: A. Ishizawa, Kaijun Zao, K. Miki

National Fusion Research Institute
WCI Center for Fusion Theory
1. Introduction

2. Motivation: evidence of turbulence role in island evolution

3. Neoclassical Tearing Mode model with turbulence feedback
 - Basic Mechanism
 - Equations
 - 0D NTM predator-prey model
 - 1D NTM predator-prey model

4. Experimental signatures
 - Predictions of the model

5. Discussion

6. Summary and conclusions
predicting Neoclassical Tearing Mode onset critical to ITER

What is the role of microturbulence and Zonal Flows?
onset & control of an NTM on JT60U [Isayama PPCF 2000]

- What sets the threshold island width?
 - Effect of turbulence on the bootstrap-current?
 - Effect of island on turbulence drive & ZFs?

- ad-hoc heat diffusivity χ_\perp in island \leftrightarrow turbulence
- turbulence-ZF sets threshold island width

- neoclassical picture: trapped particles: ∇p \leftrightarrow bootstrap current

But turbulence plays crucial role: ∇p affects island

Note: ZFs are very strong near the island separatrix
'polarization current' issue: not addressed here
Evidence for turbulence role in island evolution

- Evidence of turbulence role in island dynamics (HL-2A)
- K. Zao APTWG’13

- Island modulates turbulence
- $m=0,n=0$ mode (ZF) couples to the 3:1 vortex flow
associated to bootstrap current:

\[\delta j_\parallel = \delta j_\parallel^{\text{induct}} - D_\parallel \nabla_\parallel (\delta \phi - \delta n) + \sqrt{\epsilon} \frac{\partial}{\partial x} \delta p \]

due to neoclassical damping of electron flow & enhanced by trapped-electrons (trapped-fraction \(\sqrt{\epsilon} \))

island growth and saturation if \(\Delta' < 0 \) [Carrera ‘86]

temperature flattened by island \(\rightarrow \) modified Rutherford Eq:

\[\frac{dW}{dt} = \Delta' + \Delta_{bs}(W) \]

\(\Delta_{bs}(W) \sim \frac{\beta_p}{W} \), for large \(W \), with \(\beta_p \) : poloidal beta
What sets the threshold island width?

- **Key point**: competition between:
 - parallel heat transport along tilted field lines
 v.s. \(⊥ \) heat transport across flux surfaces
- [Fitzpatrick 1995]

\[
\text{island growth if: } W \gg W_{turb0} = \left[\frac{\chi_{turb}}{\chi||} \frac{L_s^2}{k_y^2} \right]^{1/4}, \text{ with } \chi_{turb} : \text{ad-hoc}
\]

- **but**
 - \(\chi_{turb} \text{ self-consistently} \) determined @ constant power \(Q \)
 - \(\leftrightarrow \) threshold island width = power threshold (onset \(\beta_p \))
 - \(\chi_{turb} \) is affected via:
 i) self-regulation by ZFs i.e. ZF \(\nearrow \) : turb. \(\searrow \)
 ii) depletion of turbulence drive i.e. \(\nabla T_e \searrow \) : turb. \(\searrow \)
 iii) island-induced ZF damping i.e. ZF \(\searrow \) : turb. \(\nearrow \)
 - \(\leftrightarrow \chi_{turb} = \chi_{turb}(W, Q) \)
Marginal stability of NTM coupled to marginal stability of DW-ZF → extended onset criterion

- parallel transport v.s. \(\perp \) transport (including effect of island)
- marginal stability \((d/dt = 0) \) of DW-ZF predator-prey model perturbed by island
 \(\leftrightarrow \) turbulence energy \(\epsilon \) (and ZF energy \(V_{ZF} \)) as function of heat flux \(Q \) and island-width \(W \)
- inject in marginally stable Rutherford equation (below)

Extended criterion for island growth:

\[
\text{island growth if: } \frac{QW}{W^2 + W_{turb0}^2 \sqrt{\epsilon(W, Q)/\epsilon_0}} - |\Delta'| \geq 0
\]

Marginal stability of turbulence/ZF energy v.s. heat flux \(Q \) and island-width \(W \)
0D model: predator-prey model with NTM coupling

Equations

\[
\frac{d\epsilon}{dt} = \frac{Q\epsilon}{W_{\text{turb}0}^4 [\epsilon/\epsilon_0] + W^4} - \alpha \epsilon v_{ZF}^2 - \gamma_{NL} \epsilon^2
\]

\[
\frac{dv_{ZF}^2}{dt} = \alpha \epsilon v_{ZF}^2 - \left[1 + \frac{\mu_{\text{MHD}}}{\mu} W^4\right] \mu v_{ZF}^2, \text{ with } (\mu_{\text{MHD}} W^4 / \mu) \ll 1
\]

\[
\frac{dW}{dt} = -|\Delta'| + \frac{QW}{W_{\text{turb}0}^2 \sqrt{\epsilon/\epsilon_0} + W^2}
\]

- with fixed heat flux \(Q \leftrightarrow \beta_p\)
- \(\epsilon\): DW turbulence energy
- \(v_{ZF}^2\): Zonal Flow energy
- \(W\): island-chain width
- \(\alpha\): DW-ZF coupling parameter
- \(\mu \sim \nu_{ii}\): ZF neoclassical friction
- turb. driven by electron temperature gradient (TEM, ETG...)
Model curve dW/dt v.s. W (analytic) w/o ZFs

- modifications of **NTM onset** / no effect on **NTM saturation**
- no ZFs: threshold island **larger** than Fitzpatrick threshold.
- self-consistent model curve with Zonal Flows not tractable analytically (co-dimension 2 bifurcation)
 \rightarrow numerical evaluation
At marginal stability
\[\frac{dW}{dt} = 0, \frac{d\epsilon}{dt} = 0, \frac{dV_{ZF}^2}{dt} = 0 \]

<table>
<thead>
<tr>
<th>case</th>
<th>turb. energy</th>
<th>threshold island</th>
</tr>
</thead>
<tbody>
<tr>
<td>w/o ZF</td>
<td>(\epsilon = \epsilon_1(W, Q) \sim \sqrt{W^8 + 4Q/\gamma_{NL}} - W^4)</td>
<td>graphically using 0D code</td>
</tr>
<tr>
<td>with ZF</td>
<td>(\epsilon) set by ZFs and W</td>
<td></td>
</tr>
</tbody>
</table>

- With ZFs, turbulence at marginal stability exhibits a threshold in \(Q \) and \(W \)

\[
\epsilon = \epsilon_1(W, Q) - [\epsilon_1(W, Q) - \epsilon_2]H(\epsilon_1(W, Q)/\epsilon_2 - 1))
\]

- codimension-2 threshold represented by Heaviside function

\[
H(\epsilon_1(W, Q)/\epsilon_2 - 1))
\]
Numerical Results: Dynamics & stability of 0D model

with Zonal Flows: unstable

- turb. regulated by ZFs: seed-island succeeds in flattening T_e profile:
 - turb \searrow thus ZFs \searrow

w/o Zonal Flows: stable

- turb. regulated by self-damping: seed-island cannot flatten T_e profile

Note 1: ZFs destabilize NTMs

Note 2: NTM seed-island modifies the DW-ZF dynamics
Zonal Flow impact on model curve $dW/dt = f(W)$ [numerical]

- modifications of **NTM onset** / no effect on NTM saturation
- with ZFs: threshold island & β_{onset} smaller than w/o ZFs.
- note that larger dW/dt corresponds to smaller β_{onset}
1D model: predator-prey model with NTM coupling

\[
\frac{\partial I}{\partial t} = \left[-\frac{\partial T_e}{\partial x} + \frac{\partial T_e}{\partial x}\right]_c I - \alpha I v_{ZF}^2 + \frac{\partial}{\partial x} \left[I \frac{\partial I}{\partial x}\right]
\]

\[
\frac{\partial v_{ZF}^2}{\partial t} = \alpha I v_{ZF}^2 - \left[1 + \frac{\mu_{MHD}(x, W)}{\mu} W^4\right] \mu v_{ZF}^2
\]

\[
dW = -|\Delta'| - \frac{c_1}{W} \frac{\partial T_e}{\partial x}\bigg|_{\text{sep}}
\]

- with Cst heat flux (heat source), based on Miki et al. PoP ’12

\[
\frac{\partial T_e}{\partial t} = \frac{\partial}{\partial x} \left[\chi_{QL} I \frac{\partial T_e}{\partial x}\right] + S_{\text{heat}}
\]

- island-induced T_e flattening not implemented yet (in 1D)
- cannot address threshold physics \rightarrow saturation physics
- I: DW turbulence intensity
- v_{ZF}^2: Zonal Flow intensity
NTM saturation physics: negative feedback on ZFs

- T_e flattening not implemented: \rightarrow ZFs \downarrow and turbulence \uparrow in island region

- island-width is modulated:
Predictions of the 0D NTM Predator-Prey model

- Threshold island-width

<table>
<thead>
<tr>
<th>Fitzpatrick ‘95</th>
<th>our model with ZFs</th>
</tr>
</thead>
<tbody>
<tr>
<td>$W \geq W_{turb0} \sim \epsilon_0^{1/4} \chi_\parallel^{-1/4}$</td>
<td>$W \geq W_{turb} \sim \mu^{1/4} \chi_\parallel^{-1/4}$</td>
</tr>
<tr>
<td>with turb. energy ϵ_0 ad-hoc</td>
<td>with $\mu \sim \nu_{ii}$</td>
</tr>
</tbody>
</table>

Model curve dW/dt v.s. W for different ZF damping μ

- ZFs **destabilize** NTM
- neoclassical ZF damping: **stabilizes** NTM

predictions: scaling with
- ion-ion collision freq.: ν_{ii}: suggests collisionality scan
Discussion

- Threshold island-width predicted to depend on ZF damping
 - predicts threshold island: ↑ with neo ZF damping
 ↓ with island-induced ZF damping

- key-points:
 - Zonal Flows regulate turbulence → smaller threshold-island
depletion of turbulence-drive due to T_e flattening

- open question: turbulence spreading into the island?

- prediction of island-width modulation by the DW-ZF limit-cycle ↔ LCO in (ϵ, V_{ZF}, W) space

- experimental evidence? (K. Zhao unpublished)

- expression for the DW-ZF-island LCO frequency?
 without island: $\omega_{LCO} \sim \sqrt{Q\mu}$
Summary and conclusions

- Feedback of island on Zonal Flows
- threshold island-width @low collisionality
- key-point:
 - ZFs regulate turbulence, cross-field transport
- prediction of island-width modulation by the DW-ZF limit-cycle

Open Questions
 - Back-reaction of Zonal Flows on island: polarization current?
 - Coherent ZFs v.s. random ZFs?
 - flow direction @ resonance surface?
 (associated to screening/amplif.)
 - island effect on turbulence-driven toroidal rotation?
 (Toroidal Zonal Flows)