G. Birkenmeier¹,², P. Manz¹,², D. Carralero¹, F. M. Laggner³, M. Bernert¹, T. Kobayashi⁴, G. Fuchert⁵, K. Krieger¹, F. Reimold¹, K. Schmid¹, M. Willensdorfer¹, E. Wolfrum¹, U. Stroth¹,² and the ASDEX Upgrade Team

¹Max Planck Institute for Plasma Physics, Boltzmannstr. 2, 85748 Garching, Germany ²Physik-Department E28, Technische Universität München, 85748 Garching, Germany ³Institute of Applied Physics, Vienna University of Technology, A-1040 Vienna, Austria ⁴Itoh Research Center for Plasma Turbulence, Kyushu University, Fukuoka 816-8580, Japan ⁵IJL, Université de Lorraine, CNRS (UMR 7198), 54506 Vandoeuvre-les-Nancy, France

Filament Transport in the SOL of ASDEX Upgrade

Estimation of Blob-induced Gross Erosion in Different Blob Regimes

Transport regimes of SOL blob filaments
- Blobs measured with Li-BES
- Size and velocity of blobs agree with sheath-connected regime at low densities
- Dramatic increase of convective blob transport at higher densities

Estimation of blob induced gross erosion*):
- Definition: \[E = \frac{1}{2} c_s \delta n Y \Delta t / n_{PFC} \]
- 2% of a time trace consists of blobs
- AUG plasma with a “pulse length” of one full year
- w/o redeposition, w/o impurities
- Erosion up to 1 mm: critical for first wall!

Conclusion
- Blob dynamics at low density indicates warm ion sheath-connected scaling
- Blob properties change dramatically at high density (resistive blob regime)
- Blob induced erosion for AUG conditions up to 1 mm and larger than background erosion

*Corresponding author: Gregor.Birkenmeier@ipp.mpg.de

EX/P1-25, 25th IAEA FEC, St. Petersburg 2014