The injection of small plasmoids into a pre-existing field-reversed configuration (FRC) holds promise as a new high-leverage control method. Magnetized plasmoids from plasma guns are injected into the Nihon University Compact Toroid Experiment (NUCTE). Mounted co-axial with the FRC the guns are centered on the divertor / plasma streams. The plasmoids have < 2% of the inventory, < 10% of the poloidal flux, and ~10% of the temperature of the FRC. Even so they temporarily arrest the decay of poloidal flux and actually raise it by 30 - 40% (upper figure). Further, they limit FRC rotation (lower figure), the cause of rotational instability. Injected at $t \sim 0 \mu s$, the effect of the plasmoids on the FRC appears after a delay of ~25μs. These results raise the possibility that intermittent injection of modest plasmoids along the divertor stream might become a useful control technique in future FRCs.