EX/7-2: Impurity Seeding on JET to Achieve Power Plant like Divertor Conditions

M. Wischmeier
Max-Planck-Institut für Plasmaphysik, Garching, Germany
25th IAEA Conference, St Petersburg, 2014
Acknowledgements

Co-authors

C.G.Lowry¹, A.Huber², M.L.Reinke³, C. Guillemaut⁴, L. Aho-Mantila⁵, S. Brezinsek², P. Drewelow⁵, C.F. Maggi⁶, K. McCormick⁶, A.Meigs⁴, G.Sergienko², M.F.F.Nave⁷, G.Sips¹, M.Stamp⁴, and JET contributors*

JET-EFDA, Culham Science Centre, Abingdon, OX14 3DB, UK

¹European Commision, B-1049 Brussels, Belgium
²Institute of Energy and Climate Research, Forschungszentrum Jülich, Trilateral Euregio Cluster, D-52425 Jülich, Germany
³University of York, Heslington, York, YO10 5DD, UK
⁴CCFE, Culham Science Centre, Abingdon, Oxon, OX14 3DB, UK
⁵VTT Technical Research Centre of Finland, FI-02044 VTT, Finland
⁶Max-Planck-Institut für Plasmaphysik, Boltzmannstr. 2, 85748 Garching, Germany
⁷Instituto de Plasmas e Fusão Nuclear, Instituto Superior Técnico, Universidade de Lisboa, P-1049-001 Lisboa, Portugal

*See the Appendix of F. Romanelli et al., Proc. 25th IAEA FEC 2014, St Petersburg, Russian Federation

This work was supported by EURATOM and carried out within the framework of the European Fusion Development Agreement. The views and opinions expressed herein do not necessarily reflect those of the European Commission.

This work has been carried out within the framework of the EUROfusion Consortium and has received funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement number 633053. The views and opinions expressed herein do not necessarily reflect those of the European Commission.
Limit on acceptable erosion:
- With impurity seeding and higher charged states enhancing erosion: $T_e < 2 - 5 \text{ eV}$

Expected power handling limit of actively cooled DEMO divertor component $< 10\text{MW/m}^2$:
- Limit on particle flux to limit power deposition by surface recombination ($15.8 \text{ eV per ion – electron pair}$)

Power handling limit combined with erosion limit
- completely detached divertor
ITER to DEMO:
Similar volume and size of divertor \(\Rightarrow\) similar absolute amount of radiation in SOL and divertor (ITER \(\sim\) 60\% – 70\% of \(P_{\text{SOL}}=120\text{MW}\) \(\Rightarrow\) 70MW)
Radiation: minimize in core
Radiation: minimize in core & optimize edge

Core

separatrix

Edge radiation

Divertor power dissipation in DEMO similar to ITER

Edge + core > 70% radiation
DEMO requires > 90 – 95% radiation

Total radiation required sums to > 90% - 95% of P_{heat}

Maximize radiation in EDGE and SOL \Rightarrow main guidance
Vertical target geometry

\[B_T = 2.7T \]
\[I_P = 2.5MA \]
\[\delta = 0.22 \text{ (low triangularity)} \]
\[q_{95} = 3.3 \]
\[P_{\text{heat}} = P_{IN} \cdot \frac{dW}{dt} (14-28\text{MW}) \]
\[\frac{P_{\text{heat}}}{R} \sim 5 - 9 \]
\[\frac{P_{\text{sep}}}{R} \sim 3 - 6 \]

\[R = 3m \]
Maximum f_{rad} independent of P_{heat}

- $\sim 70\% f_{\text{rad}}$ at maximum $P/R \sim 9$
- Highest f_{rad} with only N_2 seeding
- Performance of N_2 + Ne seeding evolves qualitatively very similar to pure Ne seeding
- ASDEX Upgrade reaches $f_{\text{rad}} > 85\%$ but higher c_W (W from MCW)
Maximum f_{rad} increases with seeding

$P_{\text{heat}}: 18 - 20$ MW

Close to maximum: f_{rad} low efficiency of seeding on f_{rad}

Nitrogen seeding rate [el s$^{-1}$]
Higher P_{heat} \rightarrow higher seeding for f_{rad}

Total heating power [MW], $R=3m$

- 1.0×10^{23} el s$^{-1}$
- 0.5×10^{23} el s$^{-1}$
- 1.8×10^{23} el s$^{-1}$

Total radiated power fraction f_{rad}
N$_2$ seeding into H-Mode plasma: stable radiation of 75%

- N$_2$ → leads to ELM mitigated H-mode with f_{rad} of \sim75%
- ELM mitigated phase with magnetic activity similar to M-Mode (E. Solano et al., EPS 2013)
- c_W in core at detection limit ($<10^{-5}$)

A. Huber et al. EPS 2014, M. Wischmeier PSI 2014
Poloidal radiation at highest f_{rad}

Ne seeding

Radiative instabilities with transient f_{rad} of up to 90%
Radiative instabilities with transient f_{rad} of 90%
Poloidal radiation at highest f_{rad}

Ne seeding

Radiative instabilities with transient f_{rad} of 90%

Ar seeding

Maximum f_{rad} ~60%

N$_2$ seeding

Maximum f_{rad} ~75%
Concentrated around X-point
Radiation concentrated at X-point independent of seeding species

- Ne seeding
- Ar seeding
- N$_2$ seeding

- Peaking of radiation density (W/m3) varies with seeding species as well as poloidal extent
- No radiating belt formed
According to reconstruction at highest f_{rad} this accounts for largest part of edge & SOL radiation.

Above X-point ~ inside LCFS excluding X-point ➔ due to poloidal distribution ~ core radiation

Divertor and X-point
- Lowest fraction of above X-point radiation for seeding that includes N₂
- Fraction of experimental radiation above X-point not directly comparable to requirements for DEMO
Above f_{rad} of 70% close to L-H threshold

- Ar seeding even for low seeding rates close to L-H threshold
- N_2 seeding approaches threshold for highest f_{rad}
- At low ratios radiative instabilities in case of Ne

Graph showing $\frac{P_{\text{heat}} - P_{\text{MC}}}{P_{L-H}}$ (Martin scaling J. Phys. 08) vs. Total radiated power fraction.
In highly seeded discharges $H_{98}(y,2)$ is function of β_N.
Impact of N_2 seeding on confinement scaling

![Graph showing impact of N$_2$ seeding on confinement scaling](graphic.png)

- **$H_{98(y,2)}$** represents the total radiated power fraction.
- The graph compares different plasma conditions, with a clear distinction between D only and N_2 cases.

Legend:
- Blue diamonds: D only
- Red squares: N_2
Impact of N_2 seeding on confinement scaling

High fueling and seeding levels
N_2 rate: $5 - 18 \times 10^{22}$ el s$^{-1}$
D_2 rate: $2 - 6.5 \times 10^{22}$ el s$^{-1}$
With N2 seeding mainly pedestal n_e depletes
Profiles recover and surpasses unseeded values in core
No reliable information on changes in SOL profiles yet
Highest N_2 seeding evolves to complete detachment on outer and inner target

Complete detachment coincides with strong radiation at X-point

Similar to ASDEX Upgrade (A. Kallenbach et al. EX/7-1, F. Reimold et al., subm. to Nucl. Fusion)
Operational stability of radiation

Loss of NBI power and no backup

Ch. 3
Ch. 5
Numerical modeling

- COREDIV: 1D core modeling and 2D slab geometry for SOL (G. Telesca et al. PSI2014)
 - For highest N2 seeding, radiation in divertor does not increase further due to low divertor T_e
 - Highest f_{rad} with X-point not accounted for due to 1D core (strong poloidal gradients in T_e and radiation)
- EDGE2D-EIRENE simulations demonstrate detachment achievable with N_2 seeding (TH/P5-34 A.E. Jarvinen et al.)
- Dedicated numerical modeling with full geometry pending
- SOLPS5.0 (w. EIRENE) simulations including activated drift terms for similar ASDEX Upgrade cases: complete detachment induced by loss of upstream pressure due to strong X-point radiation (EX/P3-16 P M. Wischmeier et al., F. Reimold et al. PSI 2014)
Stable discharges with radiation peaked around X-point for N_2, Ne, Ar and N_2+Ne

Maximum radiation independent of heating power
- Maximum radiation achieved 75% - DEMO requires > 90%
- Physics reason not yet understood – link to maximum stable radiation in edge region?
- ELM mitigation for marginal H-mode

Stable completely detached outer and inner divertor achieved

Pedestal profile degradation recovered by steeper core profiles

Future: Combine seeding of higher Z at higher P_{heat} with N_2