Detachment assisted by nitrogen at $P_{\text{rad, div}}/P_{\text{sol}} \sim \frac{1}{2}$ in both JET-C and JET-ILW

- Analysis of SOL conditions for N_2 seeded H-mode plasmas in JET-C and JET-ILW
- LFS detachment by nitrogen, in both JET-C and JET-ILW, when $\frac{1}{2}$ of the SOL power is radiated in the divertor
 - Lower intrinsic radiation in JET-ILW, compensated by stronger N radiation
 - Increase of pedestal D_0 flux with divertor radiation
- 20 – 50% higher D_2 versus D_0 fraction in the divertor recycling fluxes predicted for carbon versus tungsten components
 - Enhanced molecular power dissipation in JET-C \Rightarrow 10 – 20% lower P_{DIV}