Alfvén eigenmodes (AE) degrade fast-ion confinement in high β_N, steady-state scenarios

W.W. (Bill) Heidbrink1
with J. Ferron,2 C. Holcomb,3
M. Van Zeeland2, E. Bass4, X. Chen2, C. Collins1, A.
Garofalo2, X. Gong5, N.
Gorelenkov6, B. Grierson6, C.
Petty2, M. Podestà6, D. Spong7, L.
Stagner1, Y. Zhu1

1University of California, Irvine
2General Atomics
3Lawrence Livermore National Laboratory
4University of California, San Diego
5Institute of Plasma Physics
Chinese Academy of Science
6Princeton Plasma Physics Laboratory
7Oak Ridge National Laboratory

~ Fast-ion Transport

PNBI (MW)
Steady-state Advanced Tokamak (AT) scenarios often have elevated values of safety factor q.

- Projections predict a stable $\beta_N = 5$ steady-state scenario in DIII-D with increased ECCD and off-axis NBI.

1) Poli, NF 54 (2014)
2) Garofalo, NF 54 (2014)
3) Kessel, FED 80 (2006)

J.M. Park, APS (2013)
Many DIII-D discharges with $q_{\text{min}} > 2$ have poor global confinement

Is degraded fast-ion confinement the culprit?

$H_{89} = \frac{\tau_E}{\tau_{89}}$

Typical H-mode level

$H_{89} = E_{89}

1.0 1.5 2.0 2.5
2.6
2.4
2.2
2.0
1.8
1.6

$(2.7 < \beta_N < 3.9, \ 4.5 < q_{95} < 6.8)$

Ferron, PoP 20 (2013) 092504
1. AEs degrade fast-ion confinement in many steady-state scenario discharges
2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
3. Physical mechanism of fast-ion transport: critical gradient behavior due to many wave-particle resonances
4. Outlook
Use TRANSP to quantify the degradation in fast-ion signals

- Use spatially uniform ad hoc fast-ion diffusion D_f in TRANSP as an empirical measure of degraded fast-ion confinement
- Alternatively, use ratio of signal to “classical” prediction
- Global confinement varies with fast-ion confinement
The $q_{\text{min}} \sim 2$ discharge has more AEs and worse confinement than the $q_{\text{min}} \sim 1$ discharge.
Many Alfvén Eigenmodes are Observed & Expected

Measured Simultaneous Modes

Calculated Unstable TAE

Typical toroidal mode numbers: 2-5
$q_{\text{min}} \sim 1$ data agree with predicted fast-ion signals

Ratio of signal to calculated predictions

- Classical \triangle
- Neutrons 89%
- W_{fast} 100%
$q_{\text{min}} \sim 1$ data agree with predicted fast-ion signals but $q_{\text{min}} \sim 2$ data do not.

Ratio of signal to calculated predictions

<table>
<thead>
<tr>
<th></th>
<th>Classical</th>
<th>Classical</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrons</td>
<td>89%</td>
<td>61%</td>
</tr>
<tr>
<td>W_{fast}</td>
<td>100%</td>
<td>72%</td>
</tr>
</tbody>
</table>
Assuming fast-ion diffusion of 1.3 m²/s gives approximate agreement with qmin~2 data

Ratio of signal to calculated predictions

<table>
<thead>
<tr>
<th></th>
<th>Classical</th>
<th>Classical Dₚ</th>
<th>*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Neutrons</td>
<td>89%</td>
<td>61%</td>
<td>91%</td>
</tr>
<tr>
<td>W<sub>fast</sub></td>
<td>100%</td>
<td>72%</td>
<td>108%</td>
</tr>
</tbody>
</table>
Degraded fast-ion signals correlate with increasing Alfvén eigenmode activity

- Every diagnostic that is sensitive to co-passing fast ions measures reductions
- The “AE Amplitude” is the average amplitude of coherent modes in the TAE band (from interferometer signals)
- Data from quasi-stationary portion of steady-state scenario discharges
Outline

1. AEs degrade fast-ion confinement in steady-state scenario discharges
2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
3. Physical mechanism of fast-ion transport: critical gradient behavior due to many wave-particle resonances
4. Outlook
Enhanced fast-ion transport can explain the apparent reduction in thermal confinement at high q_{min}.

- Compare two matched discharges: $q_{min} \sim 1$ & $q_{min} \sim 2$
Enhanced fast-ion transport can explain the apparent reduction in thermal confinement at high q_{min}

- Compare power balance in $q_{\text{min}} \sim 2$ shot: Classical vs. $D_t = 1.3 \text{ m}^2/\text{s}$
- Reduced fast-ion stored energy
- Less power delivered to thermal plasma

\Rightarrow Thermal diffusivities like $q_{\text{min}} \sim 1$ discharge
1. AEs degrade fast-ion confinement in many steady-state scenario discharges
2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
3. Physical mechanism of fast-ion transport: critical gradient behavior due to many wave-particle resonances
4. Outlook
Different combinations of on-axis & off-axis beams vary the fast-ion gradient that drives AEs

Use L-mode plasma in current ramp:
- Low AE threshold
- Well diagnosed
As predicted by linear AE stability theory, a steeper gradient drives more AE activity.

- Growth rate from TAEFL gyrofluid code
- GYRO gyrokinetic code gives similar results
Stronger AE activity causes a larger fast-ion deficit

- The measured neutron rate approaches the classical prediction for off-axis injection
The measured fast-ion profile is nearly the same for all angles of injection!

- Suggests the fast-ion transport is “stiff”
- The linear stability threshold acts (approximately) as a “critical gradient”

Of course, in quiet plasmas, the profiles differ.
A critical gradient model* reproduces the observed trend

Gorelenkov TH/P1-2
Recent Data Supports Critical Gradient Model of Alfven Eigenmode (AE) Induced Fast Ion Transport

- Beam power scan varies AE amplitude

- Modulated off-axis beam allows measurement of incremental fast-ion flux

- Local fast-ion density ceases to rise above certain input power/ AE amplitudes
 - SSNPA Neutral particle analyzer -> fast-ion density localized in phase space
Above threshold, the modulated signal is strongly distorted by AE transport.

- Conditionally average the modulated signal
- At low power, the signal agrees well with a classical model
- Classically, the amplitude of the modulated signal should increase at high power
Infer the fast-ion transport from a continuity equation for the measured “density”

- Define a “density” that incorporates the phase-space sensitivity W in its definition

- Multiply the kinetic equation by $\int W \, d\tilde{v}$ to derive a fluid equation. Here, S is the beam source and n/τ is the thermalization sink

- Linearize. Obtain a continuity equation for 1st order (modulated) quantities

- When the AEs are absent, the transport term is negligible \rightarrow measure source in a low-power shot

- With AEs, use the measured n to infer the divergence of the fast-ion flux
Divergence of fast-ion flux abruptly increases above an AE threshold → critical gradient behavior
Many small-amplitude resonances → “stiff” transport

- Use constants-of-motion to describe complex Energetic Particle orbits

![Graph showing magnetic moment vs. toroidal canonical angular momentum with color-coded regions for trapped, lost, co-pasing, and count passing particles.](image-url)
Many small-amplitude resonances → “stiff” transport

- Injected beams populate the co-passing & trapped portions of phase space
Many small-amplitude resonances \rightarrow “stiff” transport

- Use measured modes to compute orbits that satisfy a resonance condition
- Many resonances cause stochastic overlap in phase space*

*White, PPCF 52 (2010) 045012
The high q_{min} steady-state scenario plasmas also have many resonances.

$q_{\text{min}} \sim 2$

$q_{\text{min}} \sim 1$

Resonance Deposition

Toroidal Canonical Angular Momentum

Magnetic Moment ($\mu B/E$)
1. AEs degrade fast-ion confinement in many steady-state scenario discharges
2. Degradation of fast-ion confinement can account for the overall degradation in global confinement
3. Physical mechanism of fast-ion transport: critical gradient behavior due to many wave-particle resonances
4. Outlook
New strategies are needed to overcome critical gradient behavior

Above AE stability threshold, additional on-axis beam power is ineffective

- More off-axis beam power (broader beam profile)
 Nucl. Fusion 53 (2013) 093006
- Better thermal confinement (less auxiliary power for same β_N)
 PPC/P2-31, EX/P2-39
- Replace beam-driven current with RF
 TH/P2-38
- Modify AE stability
 Nucl. Fusion 49 (2009) 065003
Conclusions

1. AEs degrade fast-ion confinement in many steady-state scenario discharges

2. Degradation of fast-ion confinement can account for the overall degradation in global confinement

3. Physical mechanism of fast-ion transport: critical gradient behavior due to many wave-particle resonances
Backup Slides
Implications for ITER

- ITER steady-state scenario is predicted to have unstable AEs
- Multiple modes with many resonances are likely → critical gradient fast-ion transport regime
- Not strongly driven past threshold
- Critical gradient calculation predicts modest effect
High β_N, high q_{min} discharges with good fast-ion confinement are observed.

- Less Beam Power
- Higher Density
 \Rightarrow Weaker AE Drive