Summary of the Test Results of ITER Conductors in SULTAN

EPFL Switzerland, ITER Organization, JAEA Japan, ITER Centre Russia, NFRI Korea, Fusion for Energy Spain, US IPO USA, ASIP P.R.China

Research, Development and Production of ITER Toroidal Field Conductors and Poloidal Field Cables in Russia

V.S. Vysotsky, K.A. Shutov, A.V. Taran, I.F. Chensky, L. V. Potanina, G.G. Svalov

Russian Scientific R&D Cable Institute

The views and opinions expressed herein do not necessarily reflect those of the ITER Organization
The hairpin sample consists either of two sections joined at the bottom (TF and CS) or a single U-bent section (PF, CC, Busbar). The current sharing temperature, T_{cs}, is measured at constant field and current, by slowly raising the operating temperature, till a voltage builds up at the high field zone.
Samples tested in last four years

<table>
<thead>
<tr>
<th>DA</th>
<th>TF</th>
<th>CS</th>
<th>PF1/6</th>
<th>PF2/3/4</th>
<th>PF5</th>
<th>MainBus</th>
<th>CC</th>
<th>CCBus</th>
<th>Joints</th>
</tr>
</thead>
<tbody>
<tr>
<td>CN</td>
<td>4</td>
<td></td>
<td>3</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>3</td>
<td>CC</td>
<td>1 CC</td>
</tr>
<tr>
<td>EU</td>
<td>5</td>
<td>2</td>
<td>2</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1 TF</td>
</tr>
<tr>
<td>JA</td>
<td>5</td>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>KO</td>
<td>6</td>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RF</td>
<td>4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

% of planned samples: 75% 30% 66% 75% 75% 80% 100% 100% 10%

Depending on the stage of the Procurement Arrangement, the conductor samples are identified as Developmental, Supplier Qualification, Process Qualification, Production.

The joint samples are prepared by the coil manufacturers as Qualification Samples.

The very last (joint) sample is expected to be tested about mid 2017.
Two features affect the performance evolution for Nb$_3$Sn based CICC:

- the *thermal strain relaxation* due to the settling in the strand bundle in operation.
- the *filament breakage* due to local bending of the strands upon transverse load.

In the TF conductors with “long” cable pitch sequence, the filament breakage dominates over the strain relaxation and the net performance change is a degradation of the T_{cs}.

In the CS conductors, the rigid structure of the tightly twisted first triplet of strands, withstands the transverse loads without significant bending. The strain relaxation dominates over the filament breakage and the net performance change is an improvement of the T_{cs}.

![Graph showing performance evolution for TF conductors](Image)

![Graph showing performance evolution for CS conductors](Image)
The test is carried out immediately after cool-down, “initial”, after 1000 load cycles, “final”, and after a thermal cycle of warm-up/cool-down, “wucd”. The ITER spec of 5.8 K is meant after 1000 load cycles, without the wucd.

The **n-index** of the transition decreases upon cyclic loading, i.e. the transition broadens, as an evidence of strand breakages.
In the RF conductors the T_{cs} performance is stable. A possible reason is the frictional property of the Cr plating of the Russian vendor, which may promote the sliding at the strand crossovers and mitigate the local strand bending.
Performance of the CS Samples

T_{cs} test at 45.1 kA, 10.85 T background field, $\geq 10\,000$ load cycles

The initial developmental conductors had a “long pitch sequence” and suffered large degradation. With the “very short pitch” in the triplet, the performance was high and stable.
Performance of the NbTi Conductor Samples

Opposite to the Nb$_3$Sn conductors, the performance of the NbTi conductors is stable and well predictable. All the PF, CC and CB samples fulfill the ITER spec.

For the MB (Main Busbar) samples, operating at high current and low background field, an unexpected poor performance was observed. At a closer look, the take-off happened at the U-bend, where the local self-field exceeds the nominal operating field.

Applying the standard “bottom joint” instead of the “U-bend”, the performance of the MB samples was recovered.
Joint Samples

A TF joint from the European industry fulfills the spec $R \leq 3 \text{ n}\Omega$ at 2 T and 68 kA. However, the strong dependence of R on the operating current and background field suggests that the pressure contacts between strand bundle and copper plate are strongly inhomogeneous, with early saturation of the few low resistance contacts. A field transient on the joint, caused by a fast discharge of the SULTAN field, produced an unexpected resistance increase $\approx 20\%$, due to the electromagnetic loads pushing the strand bundle away from the copper plate and thus weakening the contacts.

A sample of the CC joint, prepared in China, was tested in summer 2014. The very high resistance, exceeding the spec by an order of magnitude, suggests pollution of the contact between strand bundle and copper plate.
Summary

The testing rate in SULTAN matches the needs of the coil construction. The operation of the test facility run without failures in the last four years.

The conductor tests have been crucial to solve the issue of performance degradation in the CS conductor.

The conductor degradation for the TF conductors, balanced by overdesign, is acceptable for the limited lifetime of the ITER TF coils.

Most of the planned tests of conductor samples are completed. An extension of the lease contract for the SULTAN test facility is being negotiated, including the qualification tests for the joints prepared by the coil manufacturers.

Starting from 2015, the SULTAN and EDIPO test facilities at CRPP will start also testing of R&D conductors for DEMO.
VNIIKP has a long story of participation in ITER since 1993, with several short samples for Sultan and conductors for the TF and PF insert coils. Many multi-strand cables and cables in conduit have been developed.

The production line for ITER is upgraded to match the ITER PA demands:

- **New electro-plating facilities for Ni and Cr strand coating**
- **New stranding machines in the new workshop**
- **New jacketing line has been built at anew site**
- **New QA stations in accordance with the strict demands of ITER QA program**
NbTi and Nb₃Sn strands are produced by Chepetsk Mechanical Plant (Glasov) and delivered to VNIIKP.

The coating facilities have been upgraded:

- A second cleaning line has been installed to increase productivity.
- Improvement of Ni and Cr technology.
- Soft technology and ecologically cleanliness.
Production of the central spiral

Two highly efficient spiral making machines installed to produce up to 100-200 m of spirals per day from 6 to 14 mm in diameter (10mm TF and 12 mm PF). We have delivered ~15 km spirals to other ITER teams.
Cabling Facility

Two high speed tubular machines (1-st and 2-d stages)
Two medium planetary machines (3-d and 4-th stages)
One large planetary machine (final 5-th stage) equipped by the set of special compacting calibers to increase density of a cable
Final twisting takes 3-5 days for a 800 m cable
RF produces all NbTi cables for PF1 and PF6 poloidal field coils, while EU performs jacketing of all cables for the coils mentioned. In total VNIIKP has to produce 41 poloidal cables (5 dummies) with lengths 414 m and 734 m.

By October 2014 28 cables have been produced
19 cables has been delivered to ICAS in Chivasso, Italy for jacketing
TF cabling and jacketing

The TF qualification and preproduction phases have been successfully passed. By October 2014 24 TF cables have been delivered to the jacketing line. A new jacketing line located in Protvino city on territory of IHEP consists of a gallery with ~900 m length and a workshop where the equipment for welding, testing, compaction and coiling is placed.
Welding is a very important procedure under very strict QA/QC check. The jacketing line is equipped by automatic welding machine, X-ray camera, vacuum test camera, TV for visual control of welds, vacuum control equipment, etc.
The test facility is equipped by the winder to prepare 4m transporting solenoid. Important issue is to keep misalignment between turns as little as possible. Right now we reached digits ± 3 mm misalignment in 4 m diameter 3.5 m high transport coil against ± 30 mm stated in PA.
To transport from Russia to Italy the special package has been developed by stainless steel shells and plastic bags. Inner bag is vacuumed.
The vacuum chamber used previously for testing of T-15 superconducting coils has been renovated in NRC “Kurchatov Institute”.

The vacuum chamber has 4.8 m inner diameter and about 5 m total height. It is equipped by large vacuum pumps and instrumented with high accuracy measuring devices for the measurements of pressure, temperature, He flow, He leak as well as a mass spectrometer to measure the gas composition in a chamber.

Final vacuum leak test

All conductors produced successfully passed global leak test that qualified this facility for use in accordance with PA.
TF Production and Delivery

In total 28 TF conductor lengths have to be delivered by VNIIKP. By October 2014 23 conductor lengths have been produced. 16 conductors have been delivered to ASG facility in La Spezia in Italy to wind the ITER TF coils.
Conclusion

• The production line of VNIIKP including coating of strands, cabling, compacting, jacketing, packaging and global leak test successfully passed all qualifications procedures.

• The production of PF cables is in full steam and 28 out of 41 cables have been produced, 19 of them have been delivered to EU.

• The production of TF conductors is in full steam as well and 23 of 28 conductor length are produced - 16 of them delivered to EU.

• The cable Institute is successfully completing its duty in production of PF cables and TF conductors as the in-kind contribution of Russia to ITER.